
213

Skill Progression in MIT App Inventor
Benjamin Xie, Hal Abelson

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Cambridge, MA 01239
Email: {bxie, hal}@mit.edu

Abstract—This paper contributes to the growing body of
research that attempts to measure online, informal learning. We
analyze skill progression in MIT App Inventor, an informal online
learning environment with over 5 million users and 15.9 million
projects/apps created. Our objective is to understand how people
learn computational thinking concepts while creating mobile
applications with App Inventor. In particular, we are interested
in the relationship between the progression of skill in using
App Inventor functionality and in using computational thinking
concepts as learners create more apps. We model skill progression
along two dimensions: breadth and depth of capability. Given
a sample of 10,571 random users who have each created at
least 20 apps, we analyze the relationship between demonstrating
domain-specific skills by using App Inventor functionality and
generalizable skills by using computational thinking concepts.
Our findings indicate that domain-specific and generalizable
skills progress similarly; there is a common pattern of expanding
breadth of capability by using new skills over the first 10
projects, then developing depth of capability by using previously
introduced skills to build more sophisticated apps.

I. INTRODUCTION

MIT App Inventor is an environment that leverages a
blocks-based visual language to enable people to create mo-
bile applications (”apps”) for Android devices [1]. An App
Inventor project consists of a set of components and a set of
program blocks that provide functionality to these components
(Blockly, [2]). Components include items visible on the phone
screen (e.g. buttons, text boxes) as well as non-visible items
(e.g. camera, database, sensors). Figure 1 shows blocks used
in an app that responds to text messages and reads them aloud.

Fig. 1. Example of blocks programming language in MIT App Inventor.
Upon receiving a text message, this program replies to the sender with a
default message and reads the received message aloud.

App Inventor has been used in 195 countries and is taught
in formal education environments and also self-taught [1].
It is taught to people ranging in age and experience from
late elementary school students to professionals and end-user
developers [3] [4]. Our analytics find that 50% of users pro-
gram with App Inventor outside of formal educational settings.

These self-taught learners primarily learn by following step-
by-step app creation tutorials [5]. Our vision is to understand
how people learn computational thinking using App Inventor
so that these online, informal learning experiences can be
integrated into STEM curricula.

This paper explores how people develop computational
skills while creating apps with MIT App Inventor. In particular,
we explore the relationship between developing skills that
are specific to App Inventor (enabling app functionality) and
developing skills that are generalizable to other programming
domains (computational concepts). We measure skill progres-
sion across two dimensions: breadth and depth. Our data is a
random sample of users who have created at least 20 projects.
For each user, we measure breadth of capability by considering
the number of new block types introduced at each projects
and depth of capability by considering the total number of
block types at each project. We separate blocks that relate
computational concepts from other blocks and compare the
progression of demonstrated skill.

We start by describing related work pertaining to skill pro-
gression and computational thinking frameworks (especially
with Scratch), then detail our methodology. We show our
results, comparing skill progression of using computational
concepts with skill progression of using general App Inventor
functionality. We then discuss our findings, noting a common
pattern of developing breadth of capability before depth of
capability. We note limitations and then list our contributions.

II. RELATED WORK

Much of the recent research in measuring skill progression
and computational thinking frameworks for open blocks pro-
gramming environments has been done with Scratch, a blocks
programming environment used to create media projects [6].

We adapt computational (thinking) concepts from the
Scratch assessment framework from Brennan 2012 [7]. This
computational thinking framework consists of three dimen-
sions: computational concepts, computational practices, and
computational perspectives. The development of computa-
tional concepts can be assessed by analyzing projects that users
have created.

Scaffidi 2012 measured the skill progression of elementary
programming skills in Scratch [8]. He found that the average
breadth and depth of skill Scratch users demonstrated actually
decreased over time. Explanations included early dropout
of more skilled users, data inconsistencies, remixing, and

978-1-5090-0252-8/16/$31.00 c⃝2016 IEEE

Benji Xie
Highlight

Benji Xie
Highlight

Benji Xie
Highlight

214

community-wide decrease in complexity of projects. Matias
2016 replicated Scaffidi’s studies and found opposite results
(that breadth and depth of skill do not decrease over time), at-
tributing Scaffidi’s results to an unlucky data sample [9]. Both
studies note a high dropout rate in the Scratch community.

Recent work in trajectory-based measures of cumulative
repertoire of programming concepts has been done for Scratch
by Yang 2015 [10] and Dasgupta 2016 [11].

III. METHODOLOGY

A. Data Source: Projects from long-term users

Our data is a random sample of 10,571 users who have each
created at least 20 projects. We extract the types of blocks used
in each project, omitting blocks that have no functionality by
ignoring blocks not connected to a header block. (In Figure
1, the header/outer block is Texting.MessageReceived). Disre-
garding blocks without a header block removes a significant
source of noise in the data [12].

B. Computational concept blocks reflect generalizable pro-
gramming structures

We adapt computational concepts from the framework for
assessing computational thinking in Scratch for use with App
Inventor (see II). We define six computational concepts for
App Inventor: {procedure, variable, logic, loop, conditional,
list}. Of the 1,333 different types of blocks found in projects
we analyzed, 39 of them are computational concept blocks
(CC blocks) that relate to computational concepts. Figure 2
shows examples of CC blocks from each of the six concepts.

Fig. 2. Example of Computational Concept (CC) blocks. Clockwise from top
left: Procedure, Variable, Logic, Loop, Conditional, List

C. Breadth: New block types in project

Breadth of capability reflects the broad understanding of
knowledge and skill that users demonstrate. We model breadth
of capability as the number of new, never before used block
types in each of a user’s projects.

We adapt the concept of a learning trajectory as originally
defined for Scratch by Yang 2015 [10] to measure cumulative
breadth of capability for a user across their first 20 projects.
The notable difference with our approach is the omission of
an Inverse Document Frequency (IDF) block weighting [13].
App Inventor has a larger feature set than Scratch, with a
vocabulary size of 1,333 block types in this dataset, compared
to 170 in Scratch [10]. Due to App Inventor’s extensive feature
set, IDF weighting would weight blocks pertaining to more
obscure features heavily, rather than weight more advanced
blocks heavily (as intended).

To model the breadth of capability:
(1) Isolate a specific set of block types, S. For our analysis,
we choose the sets to be computational concept (CC) blocks
and non-CC blocks. These sets are disjoint. (2) Create matrix
Puser, which is the frequency of each type of block in each
project. Each row is a project a user has created (in sequential
order by creation time) and each column is the frequency
of a certain block type. (3) Create the trajectory Vdepth by
summing the values in each row of Pexist (summing the total
number of block types used in each project). (4) Create Psum,
the cumulative sum of Puser. (5) Create Pbinary , which is an
indicator matrix, by setting all nonzero values in Pcum to 1. (6)
Create Vbreadth by summing the rows of Pbinary . (summing
the new block types used for the first time in a given project)

We then calculate TCC (or Tnon−CC depending on S)
where each row is Vbreadth for a particular user. Each row
of this matrix reflects the cumulative number of new block
types introduced up to a given project for a user.

We also calculate the difference matrices Tdiff,CC (or
Tdiff,non−CC) by finding the first order difference between
columns. These matrices measure the acquisition rate, or
number of block types used for the first time at each project.

D. Depth: Total block types in project
Depth of capability refers to the mastery of certain features

and functions. We model depth of capability as the total
number of block types used in each of a user’s projects.

To model depth of capability:
(1) Isolate a specific set of block types, S. For our analysis,
we choose the sets to be computational concept (CC) blocks
and non-CC blocks. These sets are disjoint. (2) Create matrix
Pexist, which checks for the existence of each block type in
each project (1 if in project, 0 otherwise). Each row is a project
a user has created (ordered by creation time) and each column
is the frequency of a block type. (3) Create the trajectory
Vdepth by summing the values in each row of Pexist (summing
the total number of block types used in each project).

We then calculate DCC (or Dnon−CC) where each row is
Vdepth for a particular user. Each row reflects the number of
block types used in a given project for a user.

IV. RESULTS

A. Frequency of computational concept blocks
Figure 3 shows a histogram of the number of projects each

CC-block appears in. The five most common CC blocks get
a global variable value, declare a global variable, provide an
if-else statement, set a global variable, and provide a boolean.
The least used CC blocks pertain to more advanced list
operations, local variables, while loops, and if-else expressions
(expressions return a value; statements execute code).

We also find that more procedures are defined than called,
suggesting some procedures are defined but never called. This
may be because procedure definition blocks (top left in Figure
2) are header blocks, so they are counted even if no blocks
are placed within the procedure (see III-A for more on header
blocks). We also note that procedures without return values are

Benji Xie
Highlight

215

defined and called over four times as often as procedures with
return values. In the context of App Inventor, this suggests that
procedures are often used to provide similar functionality to
multiple components (e.g. 3 buttons providing color options
for a painting app) but not often used to perform repeated
calculations and return values.

Fig. 3. Histogram of Computational Concept (CC) block types in projects

B. Breadth of capability begins to plateau

We measure the number of new blocks introduced at each
of a user’s projects to show how the progression of the breadth
of capability to use App Inventor functionality relates to the
breadth of capability to use computational concepts.

Figure 4 shows the cumulative sum of block types intro-
duced at each project, averaged over all users. CC blocks and
non-CC blocks are shown as separate trajectories. Given that
there are a total of 39 CC blocks and 1,294 non-CC blocks, the
divergence of CC and non-CC trajectories is expected. We see
a decreasing rate of new block acquisition (fewer new blocks
being introduced) as users create more projects.

It is also of note that even by the 20th project, the average
number of CC and non-CC blocks used is nowhere near the
total number of blocks (25% of CC blocks, 5% of non-
CC blocks). This suggests that users are not exploring all
of App Inventor’s functionality and therefore are not being
upper-bounded by the limits of the App Inventor environment
(discussed further in [14]).

We normalize the trajectories of block acquisition in Figure
5. In this figure, a diagonal normalized learning rate would
suggest users introduce new blocks at a constant rate across
all projects. The progression of developing skills to use App
Inventor functionality and the progression of developing skills
to use computational concepts follow each other closely.
This suggests that as users demonstrate domain-specific App
Inventor skills, they also demonstrate generalizable skills using
computational concepts. We note that the normalized CC
trajectory lags slightly below the normalized non-CC trajectory

Fig. 4. Cumulative number of new blocks introduced at a given project,
averaged across all users.

for the first 9 projects, perhaps reflecting a period where users
familiarize themselves with the App Inventor environment.

Fig. 5. Normalized average cumulative number of new blocks introduced at
a given project.

The normalized rate of introducing new block types to
projects (averaged across all users) is shown in Figure 6.
As users create more projects, they introduce fewer blocks
to their vocabulary, as evidenced by the decreasing rate of
introduction. The rate of CC blocks introduction appears to
decrease more substantially than non-CC blocks in the later
projects (after 15). This could suggest that there may be a
”saturation point” where a user’s breadth of skill using CC
blocks has encompassed roughly all of the computational
concepts in App Inventor. We address this in V-B.

Fig. 6. Normalized average rate of introducing new block types to projects.

216

C. Depth of capability increases

We now analyze the depth of capability or mastery of fea-
tures and functions. Our metric to measure depth of capability
is the total number of block types used in a given project.

Figure 7 shows the total number of block types used in each
project, averaged over all users. The first five projects likely
reflect a period of familiarizing with App Inventor. After those
projects, the increase in depth of capability is somewhat linear
for both CC and non-CC blocks. In general, we see an increase
of depth of capability as users create more projects, suggesting
that as users create more projects, they tend to make more
sophisticated apps that utilize more blocks to enable more
robust functionality.

Fig. 7. Average number of block types used in each project (to measure depth
of capability)

V. DISCUSSION

We propose a common behavior of breadth before depth
where users tend to familiarize themselves with a wide array
of components and block types in earlier projects then develop
mastery of previously used skills in later projects. While
learners may only use a subset of CC blocks after 20 projects,
they get exposure to almost all computational concepts. We
do recognize that most users do not use App Inventor for long
and must consider learning benefits for short-term use.

A. Validating previous work on measuring skill progression

In general, we see that both CC blocks and non-CC blocks
follow a pattern of breadth before depth. As users create more
projects, these projects tend to have fewer new block types
introduced (decreasing breadth) but a greater total number of
block types (increasing depth). It is significant that users tend
to develop domain-specific skills relating specifically to App
Inventor functionality (non-CC blocks) in a similar pattern as
they develop generalizable skills using computational concepts
(CC blocks). Previous work that used blocks to measure
sophistication (in other environments) did not distinguish or
isolate blocks that relate to generalizable skills [10], [15]. We
believe our findings validate the use of blocks to measure
sophistication even if the blocks are not directly related to
generalizable skills.

B. Subset of CC blocks reflects exposure to all concepts
Learners only use a subset of the total CC blocks avail-

able in App Inventor but still get exposure to almost all
computational concepts. After 20 projects, we find that on
average, learners have used 25% of the 39 total CC blocks.
We believe that this fraction of CC blocks at least touches
on almost all computational concepts in App Inventor. The 8
most commonly used CC blocks include blocks from every
computational concept except loops/iterators (see Figure 3)).
App Inventor’s event-based environment does not typically
lend itself to using iterators. Using only a fraction of CC
blocks is not necessarily alarming because most CC blocks
relate to more obscure or specific functionality such as local
variables and list operations. We believe that App Inventor
enables at least exposure to computational concepts.

C. Limitations: Using ̸= learning; most users aren’t long-term
Using a block in a project does not necessarily suggest that

a user learned the skill relating to that block. So, measuring
the use of blocks in projects may be a convenient metric to
analyze at scale, but alone is not suitable for indicating whether
a concept was truly learned.

As consistent with Scratch ([8], [9]), user retention is a
challenge in App Inventor. This analysis looked at users who
created at least 20 projects, which reflect only the top 1.5%
of users. So, these users are not representative of a typical
user. While we develop long-term curriculums and courses
for online informal environments like App Inventor, we should
also consider the beneficial short-term benefits for typical users
who don’t use App Inventor for long.

VI. CONCLUSION

Our long-term vision is to understand how people learn
computational thinking in the informal online App Inventor en-
vironment. We take steps towards this vision by quantitatively
analyzing the progression of using computational concept
skills and modeling how users become more sophisticated
with using these skills which generalize to other programming
domains. We find evidence that users tend to learn new blocks
in their earlier (first 10) projects, then use previously learned
blocks in more sophisticated ways in later projects.

Contributions of this paper: 1) Modeled skill progression
quantitatively across two dimensions (breadth, depth); 2) Ver-
ified relationship between the progression of domain-specific
skills (using App Inventor functionality) and generalizable
skills (using computational concepts); 3) Identified pattern of
developing breadth of capability before depth of capability.

ACKNOWLEDGMENTS

We thank members of the MIT App Inventor team, espe-
cially Jeffrey Schiller for data collection and Aubrey Colter,
Emily Giurleo, Natalie Lao, and Aaron Suarez for proofread-
ing. We also thank Sayamindu Dasgupta of the Scratch team
for his guidance and suggestions.

217

REFERENCES

[1] “MIT App Inventor,” accessed March 14, 2016. [Online]. Available:
http://appinventor.mit.edu/explore/

[2] “Blockly,” accessed March 14, 2016. [Online]. Available:
https://developers.google.com/blockly/

[3] “Computing, Mobile Apps and the Web,” accessed March 14, 2016.
[Online]. Available: https://sites.google.com/site/appinventorcourse/

[4] “Mobile Computing with App Inventor CS Principles,” accessed March
14, 2016. [Online]. Available: https://www.edx.org/course/mobile-
computing-app-inventor-cs-trinityx-t002x

[5] “Tutorials for App Inventor,” accessed March 14, 2016. [Online].
Available: http://appinventor.mit.edu/explore/ai2/tutorials.html

[6] “Scratch,” accessed March 14, 2016. [Online]. Available:
https://scratch.mit.edu/

[7] K. Brennan and M. Resnick, “New frameworks for studying and
assessing the development of computational thinking,” in 2012 annual
meeting of the American Educational Research Association, 2012.

[8] C. Scaffidi and C. Chambers, “Skill progression demonstrated by users
in the scratch animation environment,” International Journal of Human-
Computer Interaction, vol. 28, no. 6, pp. 383–398, 2012.

[9] J. N. Matias, S. Dasgupta, and B. M. Hill, “Skill progression in scratch
revisited,” in CHI 2016, 2016.

[10] S. Yang, C. Domeniconi, M. Revelle, M. Sweeney, B. U. Gelman,
C. Beckley, and A. Johri, “Uncovering trajectories of informal learning
in large online communities of creators,” in Proceedings of the Second
(2015) ACM Conference on Learning @ Scale, 2015.

[11] S. Dasgupta, W. Hale, A. Monroy-Hernandez, and B. M. Hill, “Remixing
as a pathway to computational thinking,” in 19th ACM Conference on
Computer-Supported Cooperative Work and Social Computing (CSCW
2016), 2016.

[12] B. Xie, I. Shabir, and H. Abelson, “Measuring the usability and
capability of app inventor to create mobile applications,” in Proceedings
of the 3rd International Workshop on Programming for Mobile and
Touch, ser. PROMOTO 2015. ACM, 2015.

[13] K. Sparck Jones, “A statistical interpretation of term specificity and its
application in retrieval,” in Document Retrieval Systems. Taylor Graham
Publishing, 1988, pp. 132–142.

[14] B. Xie, “Progression of computational thinking skills demonstrated
by app inventor users,” Master’s thesis, Massachusetts Institute Of
Technology, 2016.

[15] S. Li, T. Xie, and N. Tillmann, “A comprehensive field study of end-user
programming on mobile devices,” in Proceedings of IEEE Symposium
on Visual Languages and Human-Centric Computing, VL/HCC, 2013,
pp. 43–50.

Benji Xie
Highlight

