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Abstract

I analyze skill progression in MIT App Inventor, an open, online learning environment
with over 4.7 million users and 14.9 million projects/apps created. My objective is to
understand how people learn computational thinking concepts while creating mobile
applications with App Inventor. In particular, I am interested in the relationship
between the development of sophistication in using App Inventor functionality and the
development of sophistication in using computational thinking concepts as learners
create more apps. I take steps towards this objective by modeling the demonstrated
sophistication of a user along two dimensions: breadth and depth of capability. Given
a sample of 10,571 random users who have each created at least 20 projects, I analyze
the relationship between demonstrating domain-specific skills by using App Inventor
functionality and generalizable skills by using computational thinking concepts. I
cluster similar users and compare differences in using computational concepts.

My findings indicate a common pattern of expanding breadth of capability by
using new skills over the first 10 projects, then developing depth of capability by
using previously introduced skills to build more sophisticated apps. From analyzing
the clustered users, I order computational concepts by perceived complexity. This
concept complexity measure is relative to how users interact with components. I
also identify differences in learning computational concepts using App Inventor when
compared to learning with a text-based programming language such as Java. In
particular, statements (produce action) and expressions (produce value) are separate
blocks because they have different connections with other blocks in App Inventor’s
visual programming language. This may result in different perceptions of computa-
tional concepts when compared to perceptions from using a text-based programming
language, as statements are used more frequently in App Inventor than expressions.

This work has implications to enable future computer science curriculum to better
leverage App Inventor’s blocks-based programming language and events-based model
to offer more personalized guidance and learning resources to those who learn App
Inventor without an instructor.
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Chapter 1

Introduction: Measuring

demonstrated skills in an open

environment

The objective of this thesis is to understand how people learn computational thinking

concepts, concepts which exist in many programming domains (such as procedures

and conditionals), while creating apps with App Inventor’s open programming en-

vironment. I model the sophistication of demonstrated skill using two dimensions:

Breadth of capability and depth of capability. My data consists of project data from

10,571 App Inventor users who have each created at least 20 projects (a total of

211,420 projects). With this, I analyze the relationship between learning domain-

specific skills (learning App Inventor functionality) and learning skills that generalize

to other programming domains (computational concepts). I also cluster similar users

and identify a common pattern in acquiring new computational concept skills that

is influenced by App Inventor’s block-based programming language and events-based

model.

This is the issue being addressed: That we must understand how people learn

computational thinking skills with App Inventor so that these open, informal experi-

ences of creating mobile applications with App Inventor can be integrated with STEM

curricula. By quantitatively modeling the use of computational thinking concepts,
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we are able to measure and monitor the development of computational thinking skills

at scale. This information can help develop computer science curriculum to leverage

App Inventor’s unique environment and also provide a more personalized experience

for those who learn programming with App Inventor on their own.

1.1 The question: How do people learn CS skills by

creating apps?

At any given age in our life, we spend less than 20% of our time in a formal learning

environment, as shown in Figure 1-1. I am interested in understanding how people

learn when they are not in classrooms or lecture halls, when they are in the sea of

blue that is informal learning environments. It is my intention to understand these

self-guided informal learning experiences to improve them and improve curriculum

taught in formal learning environments.

Figure 1-1: Estimated time spent in school and informal learning environments [24]

The onset of the internet and ubiquitous computing has enabled people to learn

programming outside of formal learning environments through accessible online re-

sources. 4.7 million people have tried programming with MIT App Inventor, an

online environment that leverages a blocks-based visual language (Blockly, [3]) to

enable people to create mobile applications (apps) [15].
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This thesis asks the following questions:

∙ How do people develop skills using computational concepts when creating apps

with App Inventor?

∙ What is the relationship between developing domain-specific skills of using App

Inventor functionality and developing generalizable skills using computational

concepts?

∙ What is the typical order for acquiring computational concepts in App Inventor?

1.2 MIT App Inventor democratizes the creation of

mobile apps

A project/app made with App Inventor consists of a set of components and a set of

program blocks that provide functionality to these components. Components include

items visible on the phone screen (e.g. buttons, images, text boxes) as well as non-

visible items (e.g. camera, database, sensors). Figure 1-2 shows blocks used in an

app that automatically responds to text messages and reads them aloud.

App Inventor has reached a broad international audience for use both in and out of

classrooms and formal learning environments. As of May 2016, 4.7 million people from

195 countries have created over 14.9 million apps [15]. App Inventor is taught to a

broad audience, ranging from grade school to college students. Industry professionals

also use App Inventor, often as end-user developers who write programs to support

their primary work or hobbies [10]. I discuss differences in objectives for end-user

programmers when compared to typical people who want to learn programming in

section 4.4.2.

1.2.1 App Inventor programs respond to events

App Inventor is an events-based model where even introductory projects involve spec-

ifying how the app should respond to events related to device features [25]. Examples

include responding to receiving a text message, pressing a button, touching the screen,
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Figure 1-2: Example script for Blockly programming language in MIT App Inventor.

or shaking the device. This events-based model is made possible by providing event-

handling blocks (e.g. when text received in Figure 1-2) for all events that exist for

any component. Components have specific blocks that respond to events, set/get

properties, and call methods.

In App Inventor, all functionality is initiated by event handling blocks, referred to

later as top blocks. These event-handling blocks are associated with components. In

Figure 1-2, the Texting.MessageReceived block relates to the Texting component.

Most blocks in App Inventor are component-specific. These event handling blocks may

also have parameters; In Figure 1-2, the Texting.MessageReceived event handler

block has parameters that pass in the phone number of the message sender and the

contents of the text message.

In addition to having event-handling blocks, App Inventor components also have

blocks to access and define properties. Component properties are attributes to the

component, such as the text in a label or the width of an image. A texting com-

ponent’s properties include the message to send and the phone number to send the

message to. Blocks exist to get and set these properties (green blocks in Figure 1-2

set properties).

Blocks also exist to call component-specific methods. Whereas more basic com-

ponents only have event-handlers and properties (e.g. buttons, labels), others have

additional functionality. Examples include sending a text message with a Texting

component or reading text aloud with a TextToSpeech component, as shown in Fig-

ure 1-2.
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The events-based model makes learning to program with App Inventor unique as

some concepts are easier to learn than others with this model. In example, users

learn to access component properties and event parameters early on and will tend to

use conditional statements (if/then) in earlier projects. In contrast, learners tend to

use loops less frequently because few events require iteration. I discuss this further

in section 4.3.

1.2.2 App Inventor is used outside of classrooms

App Inventor is often used outside of formal learning environments. An online survey

of 221,771 self-selected users between October 2013 and April 2016 revealed that 70%

of people use App Inventor in their homes. Decreases in usage during school holidays

also support the fact that a significant portion of people use App Inventor outside of

formal learning environments.

This self-paced and self-motivated pathway of learning to program is distinct and

different from the traditional classroom settings. Interactions with peers often do not

occur in person for these self-learners. Instructors often do not exist, resulting in a

need for online learning resources. Environments vary and the pace of learning is not

as rhythmic as a semester or quarter.

The primary learning resources for these self-directed App Inventor learners are

step-by-step tutorials. These tutorials guide users through creating an entire func-

tioning app from start to finish. Each tutorial typically focuses on either introducing

a new component (such as a canvas or GPS integration) or additional functionality

for a previously introduced component. The App Inventor resources page on the

App Inventor website contains 26 tutorials ranging from beginner level to advanced

difficulty [15]. App Inventor’s open source community has created copious other

learning resources and curricula that have become popular as well. Examples include

App Inventor’s Course In a Box [1], Mobile Computer Science Principles [16], and

Computing Science Principles for High School Teachers [17].
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Figure 1-3: Step from written tutorial for creating Magic-8 ball app [26].

1.3 Computational concepts exist in many program-

ming languages

Computational thinking was first defined in 2006 by Jeannette M. Wing: "Compu-

tational thinking involves solving problems, designing systems, and understanding

human behavior, by drawing on the concepts fundamental to computer science" [28].

Since then, it has been the focus of much computing education research as compu-

tational thinking reflects skills that generalize across domains in computer science as

well as other fields. At the core, computational thinking is about abstraction. Quot-

ing Wing: "Abstraction is used in defining patterns, generalizing from instances, and

parameterization. It is used to let one object stand for many. It is used to capture

essential properties common to a set of objects while hiding irrelevant distinctions

among them" [29].

A framework for studying and assessing computational thinking was developed by

Brennan 2011 ([5]) for Scratch, a visual blocks-based programming environment used

to create media projects [21]. This framework describes computational concepts, the

concepts people engage with as they program, as a key dimension of computational

thinking. These concepts are widely used and common in many programming lan-
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guages. (More information on computational thinking and the CT framework can be

found in section A.2)

I analyze the use of computational concepts across projects to understand how

learners develop their skills to use these concepts that can generalize to other pro-

gramming domains.

1.4 Using App Inventor functionality and using com-

putational concepts

Learning to use App Inventor is not useful unless the skills users learn are relevant

beyond the App Inventor environment. App Inventor is intended to be an introduc-

tory programming experience that serves as a springboard to future programming in

other contexts and domains. For this reason, I am curious how the development of

domain-specific skills of using App Inventor relates to the development of generaliz-

able skills of using computational concepts. If users develop their capabilities to use

App Inventor functionality in a similar fashion to how they develop their capabilities

to use computational concepts, we can say that App Inventor users learn compu-

tational concepts as they learn to use App Inventor. This would suggest that App

Inventor is a beneficial introductory experience because it prepares new programmers

for future coding experiences with other languages in other environments.

1.5 Thesis Overview

In this thesis, I conduct two experiments: 1) I measure the breadth and depth of

capability as evidenced by projects that users have created to understand the devel-

opment of skills pertaining to computational concepts. 2) I cluster users who utilize

computational concepts similarly and qualitatively analyze users close to the centroid

of each cluster to determine the order learners acquire computational concepts.

In chapter 2, I detail my methodology for my experiments. I elaborate on my data

source of projects from 10,571 long-term users and explain how I measure block types
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and why measuring block types is more effective than simply measuring the number

of blocks. I then explain how I calculate the breadth of capability by considering the

number of new block types introduced at each project and how to calculate the depth

of capability by considering the total number of block types used at each project.

I then elaborate on how I separate the block types into two disjoint sets based on

whether the block relates to a computational concept or not. I close with explaining

how I use Inverse Document Frequency (IDF) weighting to cluster learners who used

computational concepts in similar fashions.

In chapter 3, I describe my results and findings. I find that computational concept

blocks pertaining to list operations and loops/iterators are not commonly used in App

Inventor, perhaps because of App Inventor’s event-based model for programming. The

breadth of learning decreases as users create more projects, as the depth of learning

continues to increase. Looking at representative users reveals similarities in the order

learners first use computational concepts.

In chapter 4, I discuss the results in the context of other blocks-based environ-

ments and text-based environments. I propose a behavior of "breadth before depth"

where users tend to familiarize themselves with a wide array of components and block

types in earlier projects and then develop a mastery of previously learned skills in

later projects. I hypothesize that App Inventor users’ depth of capability continu-

ally increases over time because App Inventor is a robust and extensible environment

so it is still engaging to advanced and long-term users. I note that connections be-

tween programming blocks differentiate statements (code that produces an action)

from expressions (code that produces a result). This makes learning to program with

App Inventor unique when compared to learning to program with a text-based pro-

gramming language such as Java. I propose a 3-phased progression of complexity for

computational concepts that is based on how users interact with components (access

component properties, use component methods, change component state). I also note

limitations and future work.

In chapter 5, I conclude by noting implications for different interested parties and

stating the contributions of my work. Teachers can use these findings to develop a
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computer science curriculum that leverages App Inventor’s unique blocks-based pro-

gramming language and events-based model. Researchers can use this methodology

to quantitatively model the development of generalizable computational concept skills

and the results to draw comparisons between environments. Students can track their

learning progress with the computational concept complexity measure proposed in

section 4.3.3 and future tools may use a similar concept complexity measure to rec-

ommend tutorials and learning resources for self-learners based on the computational

concepts they used (or did not use) in previous projects.

Appendix A contains related work pertaining to computational thinking, measur-

ing sophistication, and perceptions between blocks and text languages. Appendix B

explains the computational concept block types.
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Chapter 2

Method: Modeling the progression of

demonstrated skills

In this chapter, I explain my technical approach. I elaborate on my data source,

project data from long-term App Inventor users (section 2.1). I model sophistication

of projects using two dimensions: breadth of demonstrated capability (section 2.2)

and depth of demonstrated capability (section 2.3). These dimensions of measur-

ing sophistication of end-user computing were first defined by Huff 1992 [9] and I

elaborate on this in section A. I separate computational concept (CC) blocks from

non-CC blocks to draw comparisons between demonstrating domain-specific skills by

using App Inventor functionality and demonstrating generalizable skills by using com-

putational concepts (section ch2:comparing). Finally, I explain how I cluster similar

users and use cluster centroids to understand typical patterns of using computational

concepts (section 2.5).

2.1 Data consists of long-term users’ projects

My data source consists of project data from 10,571 random App Inventor users who

have created at least 20 projects. Our data sources show that the top 1.4% of App

Inventor users (approx. 65,000) have created at least 20 projects. I only look at the

first 20 projects of a user, ignoring any further projects created. In total, I analyze
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211,420 projects created by 10,571 users randomly selected from the subset of App

Inventor users who have created at least 20 projects. The projects were created

between 27 March 2013 and 10 March 2016. Each project consists of the following

files:

∙ META: Contains time project was created and last modified

∙ *.bky : Data on blocks for a given screen (as XML)

∙ *.scm: Data on components for a given screen (as JSON)

∙ project.properties : Contains project name (as well as other information extra-

neous to this thesis)

I worked with Professor Franklyn Turbak (Department of Computer Science,

Wellesley College) and his student Maja Svanberg to write a python script to sum-

marize the project data into into a JSON format. We extract the following data from

the project files:

∙ Project name

∙ Time of creation

∙ Time of last modification

∙ Media asset file names

∙ Data for each screen in a project:

– Blocks info:

* Top level blocks: type and frequency of event handler, variable defini-

tion, and procedure definition blocks

* Active blocks: type and frequency of all blocks within top level blocks

(blocks that have functionality), names of procedures and variables

and number of times each was called

* Orphan blocks: type and frequency of all blocks not connected to a

top level block (no functionality)

– Component information: Type and frequency of components in screen

I use this data in each project summary to represent the project in my analysis. Of

particular note is that the project summary primarily contains information pertaining

to what was created and almost no information that identifies the user. Because a
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significant portion of App Inventor’s user base is under 18 (27% of users according

to a self-selected survey with 238,065 responses), App Inventor does not collect user

information. App Inventor users are only identified via their Google account for

signing in. So, this thesis focuses on what people create while knowing almost nothing

about the people. Considering user information would be opportunities for future

research as described in 4.5.

2.1.1 Measuring block types of active blocks prevents double

counting

For my analysis, I consider all block types for blocks that may have functionality.

There are three things I wish to make clear about measuring block types: 1) Counting

block types are not the same as counting blocks; 2) I only consider blocks that are

connected to top blocks and therefore may have functionality; 3) There are many

block types because most relate to component-specific functionality.

I count block types rather than blocks to prevent double counting. I present a

basic example to to explain this: Suppose Alice and Eve create two apps of identical

functionality. Alice uses a procedure and calls the procedures so three buttons in

her app have similar functionality. In contrast, Eve does not use a procedure and

merely copies and pastes code between her three buttons. I argue that Alice has

demonstrated greater skill because she has used a procedure to prevent redundant

code and make her project more ready for future change. Therefore, Alice’s project

should be seen as more sophisticated. Eve’s project has more blocks because she

copies and pastes code, but Alice’s project has more block types because she uses

procedure definition and call blocks. So, counting the number of block types prevents

double counting which can result from poor programming habits and is therefore

a more ideal metric of analysis. By counting block types, I ignore the number of

different procedures or variables defined in a given project.

A potential limitation to counting block types is that I do not consider the number

of procedures or variables defined within a project. This is because all procedures

27



are defined by procedure_defnoreturn and procedure_defreturn blocks (depend-

ing on if they return a value or not) and all global variables are defined by the

global_declaration blocks. This is a potential limitation to counting block types.

Omitting blocks that are not connected to top blocks ignores blocks that certainly

have no functionality, a source of noise. Previous work in quantitatively analyzing

App Inventor projects noted that a source of noise in the data was that blocks not

connected to top or header blocks were being counted (Xie 2015 [30]). Working with

Professor Turbak and Maja Svanberg, I was able to separate blocks that were not

attached to top blocks and omit them from my analysis.

Figure 2-1 shows an example of how block types for active blocks are counted.

Here, we count 3 block types: Button.Click (the top block that handles the button

click event), procedures_callnoreturn (a call to procedure named "my_procedure"),

and Player.Start (a block to play audio from a player component named "Music-

Player"). The second procedure call is not counted again because we are considering

unique block types. The lists_is_in block (to determine if a list contains a specific

entry) is not connected to a top block so it is has no functionality and is therefore

also not counted.

Figure 2-1: Example of how block types are counted. Block types, not block frequen-
cies are counted for blocks connected to top blocks.

There are 1,333 distinct block types in my dataset. 1,241 block types (93%) are

component specific. The other 92 block types (7%) are not specific to any components

and are known as built-in blocks. They are separated in 8 categories: Control, Logic,
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Math, Text, Lists, Colors, Variables, Procedures. Figure 2-2 shows the categories

of the built-in blocks in the workspace. (See 1.2.1 for more on component-specific

blocks.)

Figure 2-2: Built-in blocks are component-independent. Here, some of the built-in
blocks from the Control category are showing (controls_if, controls_forEach).

2.2 Usage of new block types models breadth of ca-

pability

The first dimension of sophistication I consider is the breadth of capability as evi-

denced by what users create. Breadth of capability reflects the broad understanding

of knowledge and skill that users demonstrate. I model breadth of capability as

the number of new block types used in each of a user’s projects.

I adapt the concept of a learning trajectory as originally defined for Scratch by

Yang 2015 [31] to measure cumulative breadth of capability for a user across their

first 20 projects. (See section A.1.1 for related work on learning trajectories.)

To model the breadth of capability, I do the following:

1. For Each User:

(a) Isolate a specific set of block types, 𝑆. For my analysis, I choose the sets

to be computational concept (CC) blocks and non-CC blocks.These sets

are disjoint (CC blocks explained in section 2.4.1).

(b) Create matrix 𝑃𝑢𝑠𝑒𝑟, which is the frequency of each type of block in each

project. Each row is a project a user has created (in sequential order by
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creation time) and each column is the frequency of a certain block type.

(c) Use 𝑃𝑢𝑠𝑒𝑟 to create 𝑃𝑐𝑢𝑚, the cumulative sum of 𝑃𝑢𝑠𝑒𝑟.

(d) Use 𝑃𝑐𝑢𝑚 to create 𝑃𝑏𝑖𝑛𝑎𝑟𝑦 which is an indicator matrix (1 if certain block

has been used by project i, 0 otherwise).

(e) Create the trajectory 𝑉𝑏𝑟𝑒𝑎𝑑𝑡ℎ by summing the values in each row of 𝑃𝑏𝑖𝑛𝑎𝑟𝑦

(summing the new block types used for the first time in a given project).

2. Calculate 𝑇𝐶𝐶 (or 𝑇𝑛𝑜𝑛−𝐶𝐶 depending on S) where each row is 𝑉𝑏𝑟𝑒𝑎𝑑𝑡ℎ for a

particular user. Each row of this matrix reflects the cumulative number of new

block types introduced up to a given project for a user.

3. Calculate the difference matrices 𝑇𝑑𝑖𝑓𝑓,𝐶𝐶 (or 𝑇𝑑𝑖𝑓𝑓,𝑛𝑜𝑛−𝐶𝐶) by finding the first

order difference of values between columns. These difference matrices measure

the acquisition rate, or number of new block types used for the first time at

each project.

A notable difference in the adaptation of learning trajectories for use in App

Inventor is that I consider all blocks of equal weight when defining trajectories. Yang

2015 uses Inverse Document Frequency (IDF) block weighting (IDF: [23]) to assign

greater weight to blocks that reflect greater sophistication [31]. In example, a Scratch

block to set a value in a list (setline_oflist_to) is weighted higher than an if

conditional block (doif). This was found to be effective for Scratch, which has a

relatively small total corpus of 170 block types. In comparison, the data I analyzed

in App Inventor yield a total corpus of 1,333 different block types. As stated in section

2.1.1, most of these block types pertain to events of different components. Because

App Inventor’s extensive features set, IDF weighting would assign greater weight to

blocks relating to rarely used functionality, rather than assign greater weight to blocks

requiring more sophistication to use (as intended). I do consider IDF weighting when

clustering similar users (see section 2.5), but not when measuring breadth or depth

of capability.
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2.3 Block frequency, events handled measures depth

of capability

The second dimension of sophistication I consider is the depth of capability as ev-

idenced by what users create. Depth of capability refers to the mastery of certain

features and functions. I model depth of capability as the total number of

block types used in each of a user’s projects.

To model the depth of capability, I do the following:

1. For Each User:

(a) Isolate a specific set of block types, 𝑆. For my analysis, I choose the sets

to be computational concept (CC) blocks and non-CC blocks.These sets

are disjoint. (explained in section 2.4.1)

(b) Create matrix 𝑃𝑒𝑥𝑖𝑠𝑡, which is the checks for the existence of each type of

block in each project (1 if in project, 0 otherwise). Each row is a project

a user has created (in sequential order by creation time) and each column

is the frequency of a certain block type.

(c) Create the trajectory 𝑉𝑑𝑒𝑝𝑡ℎ by summing the values in each row of 𝑃𝑒𝑥𝑖𝑠𝑡

(summing the total number of block types used in each project).

2. Calculate 𝐷𝐶𝐶 (or 𝐷𝑛𝑜𝑛−𝐶𝐶 depending on S) where each row is 𝑉𝑑𝑒𝑝𝑡ℎ for a

particular user. Each row of this matrix reflects the number of block types used

ina given project for a user.

I also consider the number of events responded to in a project as another metric

of measuring depth of capability. The number of events handled is part of the project

summary, so I extract the number of top blocks in a project (excluding variable and

procedure definitions) to measure the number of events responded to.
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2.4 Comparing skills using App Inventor functional-

ity and skills using computational concepts

Computational concept (CC) blocks and Non-CC blocks are disjoint sets of block

types. I use the set of CC blocks to understand how learners use generalizable com-

putational concepts and use the set of non-CC blocks to understand how learners

demonstrate use of App Inventor functionality. The objective is to compare the pro-

gression of computational concept skills with the progression domain-specific App

Inventor skills.

Computational concepts are part of a computational thinking framework defined

for Scratch by Brennan 2011 [5] (see section A.2 for more on computational thinking

and the CT framework). I adapt it for use in App Inventor by defining 6 computa-

tional concepts: procedure, variable, logic, loop, conditional, and list. Blocks from

each category are shown in Figure 2-3. In total, there are 39 CC block types. I

separate them from the other block types to create the disjoint sets of CC blocks

and non-CC blocks. The set of non-CC block types has 1,294 block types, most of

which are component-specific (as explained in 2.1.1). Appendix B provides further

information on the 39 CC block types.

Figure 2-3: Blocks from the 6 computational concepts in App Inventor. Clockwise
from top left: procedure, variable, logic, loop, conditional, list.
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2.4.1 Computational concept blocks are independent of com-

ponents

I only consider built-in blocks when determining which blocks are computational

concept (CC) blocks because computational concepts are generalizable across pro-

gramming domains. That is, I do not consider any component-related blocks when

identifying which blocks are CC blocks. This is to ensure that a project’s functional-

ity (as determined by the components used in that project) do not enable or limit the

use of CC blocks. My findings suggest that CC blocks do not reflect all generalizable

skills that learners use in App inventor, a limitation detailed in section 4.4.

2.4.2 Events are counted separately

I consider events separately from other computational concepts because they are so

ubiquitous and essential to programming with App Inventor. Events are another com-

putational concept mentioned in Brennan’s framework for assessing computational

thinking in Scratch. As mentioned in section 1.2.1, creating apps with App Inventor

involves programming responses to component events. So, any App Inventor project

with functionality will have responded to at least one event. Because event-handler

blocks are different block types for each event in each component, event-related blocks

would dominate CC block counts such that blocks related to other computational

concepts would be almost irrelevant in the measurement. I consider the number of

events responded to separately as a measurement of the depth of capability users

demonstrate (as defined in section 2.3).

2.5 Clustering is based on IDF-weighted computa-

tional concepts

I cluster similar users and look at those nearest to the center of each cluster to analyze

common patterns of using computational concept skills and compare differences be-

tween them. I cluster based on the sum of the number CC block types used at a given
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project, where each CC block type is inverse document frequency (IDF) weighted. I

use the K-Means clustering algorithm to cluster users [13], determining an optimal

number of clusters by looking at the average within-cluster sum of squared error for

each number of clusters (𝑘) in a reasonable range (referred to as the elbow method

[11]). Finally, I look at the 3 users nearest to each cluster center and determine sim-

ilarities in CC use between users in the same clusters and differences across clusters.

In the context of this thesis, inverse document frequency measures how much

information a CC block provides towards the sophistication of user capability [23].

That is, IDF weighting determines whether a block is common or rare across projects.

The IDF weighting for a CC block 𝑏 is obtained by dividing the total number of

projects 𝑁 by the number of projects 𝑝 from the total corpus of sampled projects 𝐶

that contain the block 𝑏 and then taking the logarithm of that quotient. The equation

for IDF weighting:

𝑖𝑑𝑓(𝑏, 𝐶) = 𝑙𝑜𝑔
𝑁

|{𝑝 𝜖 𝐶 : 𝑏 𝜖 𝑝}|

To calculate the feature vector to cluster on, I follow the same process as calcu-

lating the matrix for modeling depth of capability (see section 2.3) except I apply the

IDF weight vector 𝑊 to 𝑃𝑒𝑥𝑖𝑠𝑡 before values in each row are summed. The result is a

matrix where each row represents a user and each column represents a given project.

The value at the 𝑖-th row and 𝑗-th column is the sum of the IDF weighted CC blocks

used in user 𝑖’s 𝑗-th project.

With this feature vector, I run K-Means to cluster users who use CC blocks

similarly. I use the Scikit Learn implementation of K-means clustering (sklearn:

[20]). Initialization is done with K-means++ with 10 different random initial centroid

seedings. I use the elbow method to determine the number of clusters by analyzing

the average within-cluster sum squared distance between points in the cluster and the

centroid. After selecting my optimal number of clusters, I run K-means again and

then select the three users closest to the cluster center for each cluster. I say these
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users represent the cluster and find similarities between representative users within

the same cluster and identify differences between clusters.
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Chapter 3

Results

I describe my results and findings. I find that computational concept blocks pertain-

ing to list operations and loops/iterators are not commonly used in App Inventor,

perhaps because of App Inventor’s event-based model for programming. The breadth

of learning decreases as users create more projects, as the depth of learning continues

to increase. Looking at representative users reveals similarities in the order learners

first use computational concepts.

3.1 Frequency of CC Blocks

Figure 3-1 shows the number of projects (from the sample of 211,420 projects) that

contain each of the 39 computational concept blocks. Notable findings:

∙ The five most common CC blocks get a variable (lexical_variable_get),

define a variable (global_declaration), provide an if statement conditional

(controls_if), set a variable (lexical_variable_set), and provide a boolean

(logic_boolean).

∙ The least used half of the blocks relate to list operations, if/else conditional

expressions (controls_choose), or operators (logic_or), while loops

(controls_while), and local variable declarations

(local_declaration_expression).

∙ More procedures are defined than called. This is likely because a procedure
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definition block is a top block and counted in our analysis even if the procedure

is empty and does nothing. In contrast, a procedure call block would have to

be connected within a top block to be counted. (See section 2.1.1 for more on

top blocks.)

∙ Only 15% of procedures return values. This is likely because the App Inventor

environment lends itself to using procedures to share functionality across com-

ponents (e.g. having 3 buttons changing the color of a brush in a painting app).

So, a procedure without a return value may be more useful in the App Inventor

environment. I discuss this in more detail in section 4.3.1.

3.2 Breadth of capability begins to plateau

I show how the progression of the breadth of capability to use App Inventor function-

ality relates to the breadth of capability to use computational concepts by measuring

the number of new blocks introduced at each of a user’s projects. Figure 3-2 shows

the cumulative sum of block types introduced at each project, averaged over all 10,571

users. CC blocks and non-CC blocks are shown as separate trajectories.

Given that there are a total of 39 CC blocks and 1,294 non-CC blocks, the diver-

gence of CC and non-CC trajectories is expected. We see that the rate of new block

acquisition decreases as users create more projects, showing that users introduce new

types of blocks at a decreasing rate as they create more projects. It is also of note

that even by the 20th project (the last project measured in this analysis), the aver-

age number of CC and non-CC blocks used is nowhere near the total number of CC

and non-CC blocks. This suggests that users are not exploring all of App Inventor’s

functionality or computational concepts and therefore are not being upper-bound by

the limitations of the App Inventor environment.

I normalize the trajectories of block type acquisition in Figure 3-3. In this figure,

a diagonal trajectory would suggest users introduce new block types at a constant

rate across all projects. From this, we see that the progression of developing skills to

use App Inventor functionality and the progression of developing skills to use com-
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Figure 3-1: Histogram of Computational Concept (CC) block types

39



Figure 3-2: Cumulative number of new blocks introduced at a given project

putational concepts follow each other closely. This is significant because it suggests

that as users demonstrate domain-specific App Inventor skills, they also demonstrate

generalizable skills using computational concepts. We note that the normalized CC

trajectory initially lags below the non-CC trajectory for the first 9 projects, per-

haps reflecting a period where users focus on familiarizing themselves with the App

Inventor environment.

The normalized rate of introducing new block types to projects (averaged across

all users) is shown in Figure 3-4. As users create more projects, they introduce

fewer blocks (CC and non-CC) to their vocabulary, as evidenced by the decreasing

rate of introduction. The rate of CC blocks introduction appears to decrease more

substantially than non-CC blocks in the later projects (after 15). This could suggest

that there may be a "saturation point" where a user’s breadth of skill using CC blocks

has encompassed roughly all of the computational concepts in App Inventor or that

only subset of CC blocks is sufficient to support the use of a rich set of components

and app functionality.
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Figure 3-3: Normalized cumulative number of new blocks introduced at a given
project

Figure 3-4: Normalized average rate of introducing new block types to projects
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In summary:

∙ The breadth of capabilities to use App Inventor functionality (non-CC blocks)

and to use computational concepts (CC blocks) follow each other very closely

in general (Figure 3-3). This suggests as people use a broader range of App

Inventor functionality, they are demonstrating usage of more computational

concepts.

∙ The demonstrated breadth of capability grows at a decreasing rate as users

create more projects (Figure 3-4). So as people develop more projects, they

tend to reuse previously used block types rather than introduce new block types

to their vocabulary.

3.3 Depth of capability continues to increase

I now analyze the depth of capability or the mastery of certain features and functions.

My primary metric for depth of capability is the total number of block types used in

a given project, but I also consider the number of events responded to.

Figure 3-5 shows the number of block types in each project, averaged over all

10,571 users. The first five projects likely reflect a period of familiarizing with App

Inventor. After the first five projects, the increase in depth of capability is increasing

in a somewhat linear fashion for both CC and non-CC blocks. This is also true for

the average number of events handled in each project (Figure 3-6).

In general, we see an increase in depth of capability as users create more project.

So as users create more projects with App Inventor, they tend to make sophisticated

apps that utilize more blocks to enable more robust functionality.

3.4 Clustering to identify CC usage patterns

I cluster users and analyze the three users nearest to the centroid of each cluster to

identify common patterns of using CC blocks and differences between the common

patterns.
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Figure 3-5: Average number of block types used in each project (to measure depth of
capability)

Figure 3-6: Average number of events responded to in each project (to measure depth
of capability)

43



Figure 3-7 shows the results of this elbow method. I select 𝑘 = 2 to be the

optimal number of clusters because there is a discontinuous "elbow" at 𝑘 = 2 that

shows a significant decrease in the average distance between points in a cluster and the

centroid of the cluster for all clusters. The feature vector is the sum of the CC blocks

for each project, where the CC blocks are weighted by inverse document frequency

(see section 2.5 for IDF weighting). The result is an 𝑛 x 𝑑 matrix where 𝑛 is the

number of users (10,571) and 𝑑 is the number of projects considered for each user

(20). The value at 𝑖-th row and 𝑗-th column is the cumulative sum of weighted CC

blocks used in the 𝑗-th project of user 𝑖.

Given the feature vector and number of clusters defined, I perform K-Means clus-

tering to cluster users who use CC blocks in a similar pattern. I then analyze the

three users closest to the centroid of each cluster and say these users represent the

cluster as a whole.

Figure 3-7: Selecting number of clusters by considering average within-cluster sum
squared error. 𝑘 = 2 is selected.

Table 3.1 shows information on the clustering. Cluster 0 includes 72% of the

users but is a tighter cluster as the average distance from the centroid is less. The

representative users are also closer to the center. Cluster 1 includes fewer users but
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is a larger cluster as the points are farther apart. The representative users are also

farther from the center of the cluster.

Table 3.1: Information on Clusters
Cluster Num. Users Avg. Dist. from

Centroid
Range of Dist.
from Centroid

Rep. Users’
Dist. from
Centroid

0 7,655 23.8 3.4 - 169.1 3.4, 3.7, 4.0
1 2,916 32.2 9.4 - 155.2 9.4, 9.4, 10.1

We compare the average cumulative IDF-weighted CC block types for each cluster

in Figure 3-8. We find that users in cluster 1 maintain a higher cumulative weighted

CC blocks vocabulary, suggesting that members of cluster 1 tend to use more CC

blocks or more sophisticated blocks than members of cluster 0. The rate of introducing

new CC blocks decreases more substantially for cluster 1 as more projects are created,

while the rate of introduction for cluster 0 remains more linear.

Figure 3-8: Average cumulative sum of IDF-weighted CC block types for each cluster
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Figure 3-9: Normalized cumulative sum of weighted CC block types for each cluster
of users
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3.4.1 Representative Users

We say that the three users closest to the center of each cluster are representative

users of the cluster. We analyze the order in which the representative users use CC

blocks to understand common patterns and identify difference between clusters and

across clusters. Information on the representative users is shown in Table 3.2 for

cluster 0 and Table 3.3 for cluster 1.

Representative users in cluster 0 did not use a single CC block in the first 4

projects, creating apps that only use basic user interface components (button, textbox,

etc.) to perform tasks such as add or subtract numbers. One representative user

followed only the first tutorial (Talk to Me), while the other two did not recreate any

tutorials in their first 4 projects. This paired with the knowledge that cluster 0 uses

fewer CC blocks may suggest that learners benefit from at least some direction via

guided tutorials to learn computational concepts with App Inventor. In comparison,

each representative user from cluster 1 followed multiple tutorials in their first 4

projects.

From analyzing the representative users in each cluster, it is difficult to identify

differences between the clusters, but there are patterns that we identify from consid-

ering representative users from both clusters together. Patterns identified for each

computational concept type:

∙ Variables : Users tend to access component properties with the

lexical_variable_get block before using that same block to access global

variables.

∙ Conditionals : If statements (controls_if) tend to be used early on for all users.

These conditionals often check the state or properties of certain components

(e.g. If a textbox has a valid phone number, send a text message to that phone

number)

∙ Logic: Logic/operator blocks tend to be introduced after conditionals. Using

logic blocks enable users to check for more states with a conditional (e.g. if

textbox has a valid phone number and another textbox has a message, send the
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text)

∙ List : Lists can be created (lists_create_with) and utilized without any func-

tionality to manipulate the list. They are typically displayed with a ListViewer

component and represent a predefined static list of items. (e.g. display a list of

phone numbers of members of a household)

∙ Loops : Iterators are not often used. This is likely because App Inventor’s event

driven environment limits the uses for an iterator.

∙ Procedures : Procedures without returns are almost always used before proce-

dures with return values. This suggests the common trend of using procedures

to manipulate component properties or provide components with functionality

(e.g. writing a procedure to clear a textbox)
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Table 3.2: Representative Users’ Orders of Acquiring Computational Concepts, Clus-
ter 0
Project
Num.

User 1 User 2 User 3

1
2
3
4
5 controls_if, lexi-

cal_variable_set,
logic_operation,
global_declaration,
lexical_variable_get

controls_if lexical_variable_set,
global_declaration,
lexical_variable_get

6 controls_forrange
7 controls_while logic_false,

logic_boolean
controls_if

8 lists_create_with,
lists_replace_item,
lists_add_items,
lists_select_item,
controls_foreach

controls_choose

9 lists_remove_item lexical_variable_get
10 controls_forrange
11 lexical_variable_set,

global_declaration
12 procedures_defnoreturn,

proce-
dures_callnoreturn

controls_while

13
14
15
16 procedures_defreturn,

proce-
dures_callreturn, lo-
cal_declaration_expression

17 lists_create_with, con-
trols_foreach

18 logic_boolean
19 lists_pick_random_item
20 lists_length,

lists_select_item
logic_compare
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Table 3.3: Representative Users’ Orders of Acquiring Computational Concepts, Clus-
ter 1
Project
Num.

User 1 User 2 User 3

1 lexical_variable_get
2
3 controls_if lexical_variable_get,

logic_boolean
4
5
6
7 global_declaration, lex-

ical_variable_get
8 controls_if
9
10
11
12 lists_create_with,

logic_boolean
logic_false, logic_or logic_boolean

13
14 lexical_variable_set controls_if,

global_declaration,
logic_compare

15 procedures_callnoreturn lexical_variable_set
16
17 lists_pick_random_item,

logic_false
18 procedures_defreturn,

lists_create_with,
lists_copy, proce-
dures_callreturn, pro-
cedures_defnoreturn,
lexical_variable_set,
global_declaration,
lists_is_in,
lists_append_list,
controls_foreach

19 logic_compare logic_false
20 procedures_defnoreturn,

proce-
dures_callnoreturn
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Chapter 4

Discussion

In this section, I propose a behavior of "breadth before depth" where users tend to

familiarize themselves with a wide array of components and block types in earlier

projects and then develop a mastery of previously learned skills in later projects

(section 4.1. I hypothesize that App Inventor users’ depth of capability continually

increases over time because App Inventor is a robust and extensible environment so it

is still engaging to advanced and long-term users. I discuss the results in the context of

other blocks-based environments (section 4.2) and text-based environments (section

4.3). I note that connections between programming blocks differentiate statements

(code that produces an action) from expressions (code that produces a result). This

makes learning to program with App Inventor unique when compared to learning to

program with a text-based programming language such as Java. I propose a 3-phased

progression of complexity for computational concepts that is based on how users

interact with components (access component properties, use component methods,

change component state). I also note limitations 4.4 and future work 4.5.
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4.1 Developing breadth before developing depth of

skill

Our analysis suggests that users begin by developing their breadth of skill and then

go on to develop their depth of skill in later projects. That is, users will learn to

use different components and different blocks in their earlier projects, and then reuse

previously used concepts in more advanced ways in later projects. The decreasing

rate of new block types being introduced into projects and the increasing number of

block types used in later projects supports this claim. The transition from learning

new skills to developing previously used skills is continuous but it appears that after

creating 8-10 projects, users typically focus less on acquiring new skills and begin to

focus on using developing previously used skills to create more sophisticated apps and

use computational concepts again. This reuse is necessary for learning.

Reusing a concept multiple times is necessary to actually learn a concept, so

there is a need to create many projects (or iterate on a project many times) to

learn generalizable computational concepts with App Inventor. So, to actually learn

computational concepts from App Inventor, two things are required: Learners must

continue using App Inventor for a long enough time to transition to developing the

depth of their capabilities and the environment must be extensible enough such that

there are more complex and sophisticated artifacts to create.

I select users who created at least 20 projects, which accounts for only the top 1.4%

of users. Previous analysis of App Inventor found that less than 20% of users created

more than 4 projects [7]. Our analysis suggests that a typical user typically does

not create enough projects with App Inventor to develop mastery of skills (develop

depth of capability). This lack of user retention is typical in open programming

environments, as I will elaborate on in section 4.2, because a significant portion of

users are self-directed and without an instructor. For those who use App Inventor in

formal learning environments, this lack of retention is less of an issue.

App Inventor is extensible enough for use in formal environments and long-term

curricula. A suitable learning environment must follow a "low-floor, high-ceiling"
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design in that it must be usable enough such that beginners can easily create a basic

yet functioning program (low floor), but also have extensible capabilities such that

advanced users can also benefit (high ceiling) [8]. Previous work with App Inventor

has found that the environment is extensible enough for advanced users because it

enables users to create apps that connect to the external world [30]. That is, advanced

apps connect to sensors on the phone, the internet (e.g. HTTP requests), and physical

components such as Arduino via Bluetooth connection. This functionality for App

Inventor suggests that App Inventor has a "high ceiling" for more advanced users

to benefit from it and create enough apps such that they can develop the depth of

their capabilities to use computational concepts. App Inventor has enough advanced

functionality such that it can remain engaging for long-term users and can therefore

be integrated with a long-term formal curriculum.

4.2 Comparing to Scratch

I compare my analysis on measuring the progression of sophistication with the work

by Christopher Scaffidi on the progression of sophistication of Scratch projects [19]. I

find that both Scratch and App Inventor have a plateauing in the breadth of demon-

strated capability. That is, users only learn a subset of features available on each

platform. From there, Scaffidi found that the depth of capability for Scratch projects

actually decreased over time, whereas we find that App Inventor users’ depth of capa-

bility increases over time as they tend to make more sophisticated projects. Scaffidi

attributes this decrease in depth of capability over time in Scratch to user retention

problems; advanced users tend not to stay with Scratch.

App Inventor offers more functionality and perhaps seems more of an authentic

programming experience when compared to Scratch. Whereas Scratch is primarily

designed for 8 to 16 years old, App Inventor has proven useful to grammar school

students as well as college aged students and even industry professionals who do

not have a strong programming background (known as end-user programmers; see

section 4.4.2). This is likely because Scratch projects can only be shared within
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the Scratch environment while App Inventor enables users to create fully functional

Android applications that they can use, share, and even put on the Google Play

store. Since blocks-based programming tends to have a perception of inauthenticity

when compared to text-based programming (see section A.3), creating apps that a

wider population of people (not just App Inventor users) will find useful likely helps

attribute to the authenticity of App Inventor which helps retain users. Nevertheless,

user retention is a challenge in open programming environments like App Inventor.

User retention is a ubiquitous challenge to open, online environments such as

App Inventor. Similar open programming environments point to user drop-off before

users develop their depth of capability. Research with Scratch found that breadth

and depth of capability decreased as time progressed, likely because more advanced

users stopped using the environment [19]. Research on Microsoft TouchDevelop, an

environment that enables the programming of apps from a mobile device, found that

over 70% of users learned a few features initially then stopped learning new features,

suggesting that the TouchDevelop users also stop focusing on developing the breadth

of their capability at some point [12]. Because these online environments are so

accessible with their easy sign-up process and intuitive interface, retaining users will

always be a challenge to environments such as App Inventor. Nevertheless, there

exists a need to develop a service that is sophisticated enough to still be engaging for

users with previous programming experience or long-term users.

4.3 Learning programming with blocks in App In-

ventor ̸= learning with text languages

Blocks programming languages are not text programming languages. Likewise, learn-

ing programming with blocks languages is not the same as learning programming

with text languages. The order and progression of using computational concepts

with blocks programming in App Inventor deviates from what we might expect when

teaching with text languages. This is likely because blocks languages discretize con-
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cepts in separate blocks and because of App Inventor’s event-driven programming

environment. I use my analysis of the progression of representative users (see sec-

tion 3.4.1) to compare programming with blocks in App Inventor to programming

with Java, although this analysis should generalize to other text-based programming

languages. Whereas previous work has analyzed differences in perceptions between

blocks-based and text-based languages, I consider differences based on usage patterns

(See section A.3 for related work on differences in perceptions of blocks and text

languages.).

4.3.1 The connections in block languages separate statements

from expressions

The Blockly language in App Inventor has two distinct connections for statements

and expressions. Statements produce an action and blocks are added vertically. Ex-

pressions produce a resulting value and blocks are added horizontally. These different

connections create visual cues which help novices differentiate between producing

actions with statements and producing values with expressions [4]. In Figure 4-1,

the top procedure (increment_counter) contains a statement which increments a

counter label on the app and does not return anything. The blocks are added to this

procedure vertically. The bottom procedure (square_values) contains an expression

and returns the squared value of the input parameter. The blocks in the procedure

that returns the squared value are added horizontally because the procedure contains

an expression and returns a value.

Blocks languages discretize concepts that otherwise may seem connected or atomic

in text languages. In Java, determining whether a method returns a value typically

requires at most changing the method header and adding a return statement. We

associate methods as a concept and a return statement (or lack thereof) as an attribute

of a method. In App Inventor, procedures with and without return values are entirely

different blocks, as shown in Figure 4-1. We find that only 15% of procedures return

a value in App Inventor. As mentioned in section 4.3, this is likely because the App
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Inventor environment lends itself to using procedures to manipulate components and

therefore not return anything. But nevertheless, we find that procedures with return

values are first used well after procedures without return values are used, if at all. So,

blocks languages may separate concepts that would otherwise be seen as connected in

Java. This discretization does prove to be necessary for blocks languages since blocks

have different connections.

Figure 4-1: Procedures without return values (top) and with return values (bottom).

Separating concepts that appear atomic in text languages is necessary because

of the different connections between blocks. Figure 4-2 shows two different if/else

blocks in App Inventor. The left one determines which statement to execute, whereas

the right one chooses which expression to return. In Java, deciding which script to

execute and deciding which value to return requires the same if/else statement. The

different connections for blocks programming requires multiple blocks to reflect the

functionality of one concept in Java. This may limit learners’ perceptions of what

computational concepts (conditionals in this case) can and cannot do.

Figure 4-2: If/else blocks to determine which statements to execute (left) and which
expressions to return (right)
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4.3.2 Computational concepts may develop from manipulat-

ing components

My analysis has focused strictly on analyzing computational concept blocks that

are agnostic of which components are used in the app. In my analysis, I treat

all component-related blocks as separate from computational concepts (as non-CC

blocks). From analyzing representative users more closely, I find that using and ma-

nipulating component properties may reflect using computational concepts. I provide

an example of using the block to get a variable (lexical_variable_get) to access

a method parameter as well as a global variable. This block is equivalent to both

variables and method parameters in Java.

An interesting observation is that users often use the lexical_variable_get

before they use the blocks to define or set variables. This is because the

lexical_variable_get block can access both a variable as well as component-specific

parameters. Figure 4-3 shows an example of this, as the lexical_variable_get

blocks (in orange) access the coordinates the canvas component was touched at as

well as the value stored in the global variable dotsize. So, lexical_variable_get

is a single block that is used to both access component parameters as well as access

variables. In this case, the blocks-based language has a single block that is overloaded

and reflects multiple concepts in Java.

Figure 4-3: The lexical_variable_get block (in orange) can access both component
parameters (x, y) as well as global variables (dotsize)
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4.3.3 Measuring complexity of computational concepts rela-

tive to App Inventor’s event-based model

I analyze the order in which learners use computational concepts to determine the

perceived complexity of using different concepts. I say that users perceive CC blocks

that are used less frequently (as shown in Figure 3-1) or introduced in later projects

(Tables 3.2, 3.3) as more complex. I determine the complexity of concepts relative

to how users interact with the components of their apps. Learners transition from

accessing and responding to component events, to manipulating component function-

ality, to setting component properties and states. I detail the computational concepts

used in each phase of complexity:

In the first phase, users access component properties and respond to component

events. In this phase, users tend to get component properties, use conditionals to

decide between statements to execute, and use logic blocks to make more advanced

conditional cases. Typical behavior in this phase:

∙ The get variable block (lexical_variable_get) is used to access component

properties (e.g. the value in a textbox or location of a screen touch).

∙ Conditional statements (controls_if) are used to decide which statement to

execute based on the state of a component (e.g. if a checkbox is checked).

∙ Logic blocks (e.g. logic_boolean, logic_compare) are used to make more

advanced conditional cases.

In the second phase, users manipulate component functionality. In this phase,

users typically call component methods. Users tend to define and set variables, de-

fine procedures without returns, create lists, and use basic loops/iterators. Typical

behavior in this phase:

∙ Global variables are defined and set (global_declaration,

lexical_variable_set). In the previous phase, learners utilized the get vari-

able block to access component properties. Now, learners use it to access global

variables they define.

∙ Procedures without returns are defined and set (procedures_defnoreturn,
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procedures_callnoreturn). Users typically define these procedures to repli-

cate similar functionality across multiple components (e.g. moving an image

sprite in a different direction depending on which button is pressed)

∙ Lists are created but often not manipulated (lists_create_with). Users can

create a list with predefined values to display information in a List Viewer com-

ponent or they can create a color by specify a list of RGB values. Information

in this list is often never manipulated in this phase.

∙ Basic loops (controls_forRange, controls_forEach) may be used. As men-

tioned previously, App Inventor’s event-based model tends not to lend itself to

require iteration, so iterators are introduced later than one might expect when

learning a text-based language.

∙ Logic blocks are used to make more advanced conditional cases.

In the third phase, users tend to change components’ properties and states. Users

tend to define procedures that return values, manipulate lists, and use iterators.

Typical behavior in this phase:

∙ Procedures with return values are defined and called (procedures_defreturn,

procedures_callreturn). Example uses for procedures with return values

include determining user-defined states (e.g. if a sprite is growing or shrinking)

and making mathematical calculations (e.g. determining distance travelled with

a location sensor).

∙ List operations (lists_pick_random_item, lists_select_item,

lists_append_list) and list properties (lists_length, lists_is_in) are uti-

lized. Examples uses include keeping track of sprites that appear and disappear

in a game or selecting a random output in a magic 8 ball app.

∙ While Loops tend to be used to iterate based on the state of a component (e.g.

number defined on a slider) or a global variable. These loops tend to require

more sophistication because the conditional to continue iterating must be de-

fined and the user must increment some counter in the while loop to prevent an

infinite loop. In the other iterators (controls_forRange, controls_forEach),

this incrementation is built in.
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This three phase description of perceived complexity in App Inventor provides in-

sight into the order users tend to use computational concepts and therefore the order

of the perceived complexity of the concepts. This information may prove useful when

determining the order concepts should be introduced in a curriculum taught with

App Inventor. While I base this information off users near the centers of the clusters,

these findings are more qualitative than other analysis in this thesis. I also ignore dif-

ferences in users and learning environments. Conceivably, users with prior experience

with a text-based programming language or Scratch may use computational concepts

differently than a user with no prior programming experience. Likewise, the order

and perceived complexity of concepts may differ in a classroom environment with a

trained instructor present when compared to learning App Inventor independently

and without direct guidance. I consider these factors as opportunities for further

research (section 4.5).

4.4 Limitations

4.4.1 Measuring blocks is not enough

As mentioned in section 4.3.2, generalizable knowledge is not limited to using compu-

tational concepts. Skills necessary in other programming languages such as accessing

and manipulating object (component) properties and states is done with component

specific blocks which by definition are non-CC blocks. So measuring only CC blocks

does not sufficiently encompass the computational thinking skills that users can learn

from using App Inventor.

4.4.2 End-user programmers care less about computational

thinking

Many of App Inventor’s users can be categorized as end-user programmers. End-user

programming can be defined as "programming to achieve the result of a program

primarily for personal, rather than public use" (Ko 2011, [10]). End-user programmers
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write programs to support some goal within their domain of expertise. Examples

include doctors from in India using App Inventor to create an app to spread awareness

and treatment options for diabetes [18], and young people in Oakland, CA using

App Inventor to create a mobile game that teaches people about how to save water

during the drought [32]. These are examples of people that use App Inventor to write

programs that support their domain-specific goals.

These users are not as interested in developing computational thinking skills as

they are in developing skills to create apps to accomplish their specific tasks. So while

this thesis focuses primarily on computational thinking skills, it is still important for

users to develop their knowledge of App Inventor skills.

4.5 Future Work: Data on project progression, users

would extend work

Looking at the development of specific projects and considering different types of

users. would provide more insight into how users develop their programming and

computational thinking skills.

While this thesis focuses on the progression of a user across projects, in-depth

analysis of the development of projects would shed insight into learner tendencies

and behaviors. For this analysis, it would be ideal to analyze a learner’s step-by-

step process as they develop an app and see how this process changes as they create

more apps. Logging the app-development process would provide more information

that showing the final state of the app (the data I analyzed for my thesis) because

it would provide insight into the learner’s programming behaviors, patterns, and

mistakes. Interesting research directions include how users develop iteratively in App

Inventor’s blocks-based environment or how users debug or program through trial-

and-error. Work by Weintrop 2015 suggests that high school students perceived that

blocks-based languages lent themselves to trial-and-error programming [27]. Blikstein

2011 is an initial step towards developing metrics to identifying patterns to students’

61



programming habits [2].

Considering how different users create apps and learn with App Inventor would

be a further extension of this thesis. Users could be categorized by age, prior expe-

rience (previous computer science courses, previously used Scratch, participated in

hour of code, never coded before), objectives (learn programming, build apps), or

environment they use App Inventor in (in-person class, online class, self-learning).

By understanding how usage patterns differ by different types of users, we would be

able to personalize curriculum and learning resources to different types of users.

Another extension to this work would be to analyze particular blocks that pertain

to abstraction, such as procedures and variables. A limitation to this analysis is that

when measuring development of sophistication, all blocks are treated equally. As

explained in section 2.2, IDF weighting (used to weight blocks in previous analysis

for Scratch) is not appropriate for the blocks because some blocks relate to rarely used

components or rarely used component functionality. An alternative approach would

be to follow the use of particular blocks across projects. Analyzing the number of

variables and procedures defined and the number of times each variable or procedure

was called may provide further insight into how users’ sophistication with the concept

of abstraction develops.
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Chapter 5

Conclusions

I conclude by noting the implications of this research for computer science teachers,

education researchers, and App Inventor students. I then list the contributions of my

thesis.

5.1 Implications

5.1.1 Teachers can develop curriculum with App Inventor’s

event-based environment in mind

This work makes us more able to develop a curriculum that teaches computer science

principles and computational thinking using App Inventor with App Inventor in mind.

By recognizing App Inventor’s blocks-based programming language and events-based

model, teachers are able to develop a curriculum that leverages App Inventor. In

section 4.3.3, I define 3 phases that provide an order of increasing complexity for

computational concepts in App Inventor. With this concept complexity measure,

curriculum can start with what comes naturally in App Inventor for beginners, not

what comes naturally for a text-based programming language or another environment.

Furthermore, the finding that learners develop breadth before depth of capability

(section 4.1) suggests that teachers should develop a curriculum that involves creating

at least 10 projects to develop learners’ capability to use a wide variety of blocks and
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more than 10 projects to develop mastery of previously used skills.

5.1.2 Researchers can quantitatively measure progression of

skill in blocks-based environments

This work quantitatively measures the sophistication of skill demonstrated by users

against two dimensions: breadth and depth. This connects previous work in mea-

suring sophistication and measuring learning trajectories (breadth of capability) and

shows that these quantitative techniques of measurement extend beyond Scratch and

are applicable to App Inventor. So, I identify techniques of measuring the progres-

sion of skill at scale and suggest that these techniques are generalizable to other

blocks-based programming environments.

This work also validates an assumption made by previous researchers ([19], [30],

[31]) that users tend to follow a similar pattern in learning generalizable computational

concepts as they do in learning domain-specific functionality. So, we are able to

consider all blocks when measuring sophistication, even if most blocks in App Inventor

do not relate to knowledge that generalizes across different programming domains.

5.1.3 App Inventor learners can measure their progression of

learning

These findings are early steps toward enabling App Inventor learners to monitor

their own learning and progression. Most App Inventor users create apps outside of

classroom or clubhouse environments, so they do not have an expert providing them

guidance. Knowing the types of computational concepts that App Inventor teaches

and having an order of increasing complexity for these computational concepts (as

defined in section 4.3.3) could enable students to keep track of their own learning as

they learn to program with App Inventor.

To help guide users’ learning as they create apps, we might imagine a map or guide

that directs users to build apps that include computational concepts of increasing

complexity or a tool that analyzes a user’s App Inventor portfolio and notes what
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skills they have and have not used and recommends a relevant tutorial or learning

resource to increase the breadth or depth of capability for a given user.

5.1.4 Contributions

The big idea behind this thesis is that we can quantitatively analyze the progression

of using computational concept skills and model how users become more sophisticated

with using these skills which generalize to other programming domains. By under-

standing what users are learning by creating apps with App Inventor, we take a step

towards the long-term objective of connecting the knowledge acquired by open-ended

learning with what is being taught in formal classrooms.

Another important contribution of this thesis is the clustering of users who share

similar learning patterns with learning computational concepts and investigating users

who are representative of the larger population. With this, we can better understand

the perceived complexity of concepts by investigating the order in which learners use

computational concepts. This work can guide future curricula that uses App Inventor

as well as provide useful insight for adaptive tutors that can guide future App Inventor

users and create more personalized learning experiences.

In conclusion, for this thesis I:

∙ Modeled the demonstrated breadth and depth of App Inventor user capabil-

ity quantitatively. Breadth is modeled as a learning trajectory, or cumulative

number of new block types used at each of a given user’s projects. Depth is

measured by the number of unique block types in project and the number of

events responded to.

∙ Compared the development of domain-specific skills to use App Inventor func-

tionality with the development of generalizable skills to use computational con-

cepts.

∙ Compared results to Scratch and explained differences.

∙ Identified a common of pattern of computational concept usage where learners

use new computational concepts in earlier projects (first 10), then reuse previ-

ously introduced computational concepts to develop more sophisticated apps.
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∙ Identified differences in learning to program with a blocks-based language in

App Inventor’s event-based environment and learning with a text-based pro-

gramming language such as Java.

∙ Defined a concept complexity measure that separates computational concepts

into three phases based on users’ developing knowledge of component usage.
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Appendix A

Related Work: Computational

Thinking Frameworks, Measuring

Demonstrated Skill

Scratch is among the most similar environments to MIT App Inventor. It is a visual

blocks-based environment used to create media projects (website: [21]). Figure A-1

shows Scratch blocks that make a sprite move, plays music, and ends with the sprite

saying something.

Figure A-1: Blocks from Scratch, an environment similar to MIT App Inventor

Much of the previous work that this thesis builds off of is work done with Scratch.

In particular, I adapt the use of a learning trajectory to model informal learning from

a proof of concept by Yang 2015 [31] and computational (thinking) concepts from

Brennan 2012 [5].
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A.1 Breadth and depth are measures of demonstrated

skill

Huff 1992 developed a questionnaire to measure the sophistication of users in end

user computing (EUC) [9]. Three fundamental aspects of EUC were identified:

∙ breadth of capability: a broad understanding of knowledge and skill

∙ depth of capability: mastery of certain features and functions

∙ finesse: ability to creatively apply EUC

This thesis focuses on measuring the breadth and depth of demonstrated skill.

Finesse is out of the scope of this thesis but perhaps an opportunity for future work.

Scaffidi 2012 would use Huff’s model to measure the progression of elementary

programming skills in Scratch [19]. Relating to Scratch, Scaffidi grouped similar

primitives into different categories. Breadth was the number of distinct categories of

primitives used per project. Depth was the total number of primitives invoked in a

project.

The contributions of Scaffidi’s work include converting Huff’s model to Scratch

such that skill could be measured quantitatively by analyzing project data and with-

out surveying users. Scaffidi concluded that the average depth and breadth of skill

Scratch users demonstrated actually decreased over time, as shown in Figure A-2.

Four possible explanations were proposed: early dropout of more skilled users, data

inconsistencies, remixing (building off of other users’ publicly shared projects), and

community-wide decrease in complexity of projects.

For this thesis, breadth of capability is modelled by a learning trajectory, as

proposed by Yang 2015 [31]. Depth of capability is modelled by considering the

number of block types used in projects over time.

A.1.1 Learning trajectories model the breadth of capability

The concept of a learning trajectory is first introduced by Yang 2015 for Scratch [31]

and used by Dasgupta 2016 to empirically verify that Scratch programmers could
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Figure A-2: Results from Scaffidi [19] showing a decrease in average breadth and
depth in Scratch projects over time.

increase their programming skills and knowledge of computational thinking concepts

through remixing other users’ code [6]. In this thesis, I adapt the concept of a

learning trajectory for App Inventor and use it to measure the breadth of skill to use

App Inventor functionality and computational thinking concepts.

Work by Yang 2015 modeled learning trajectories and identified learning patterns

at a microscopic (individual user) and macroscopic (cluster) level [31]. Yang measured

3 things: Amount of learning, rate of learning, and potential prior knowledge. Amount

of learning is measured by considering the cumulative vocabulary of block use as a

user creates more projects over time. The rate of learning is measured by the number

of block types used for the first time for each project. The potential prior knowledge

is considered by measuring the first value in the trajectory. The contributions of this

work: Modeling informal learning as a quantitative trajectory, identifying patterns of

learning and corresponding sub-populations.
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A.1.2 The number of block types in a project measure the

depth of capability

My previous work measures the intricacy of App Inventor projects by considering the

number of block types in a project (Xie 2015 [30]). This method was found to be more

effective than merely counting the number of blocks in a project because counting

the number of blocks would bias the intricacy of projects that do not exhibit code

reuse (procedures, variables) higher. In other words, a project that copy and pasted

identical code in multiple locations should be considered less intricate than a project

that used a procedure. I will reuse this idea of counting the number of unique blocks

to model the depth of capability.

A.2 Computational Concepts are a dimension of Com-

putational Thinking

Jeannette M. Wing first defined computational thinking a decade ago: "Computa-

tional thinking involves solving problems, designing systems, and understanding hu-

man behavior, by drawing on the concepts fundamental to computer science" [28].

Computational thinking is first and foremost about abstracting and decomposing

complex tasks into smaller ones. It can be thought of as the third pillar of science:

Theory, experimentation, and computation [29]. Since its first mentioning, much of

the research emphasis on computer science education has centered around this ever

expanding term that is computational thinking.

Because computational thinking is intended to be useful to anyone, it has a multi-

tude of definitions depending on person and context. In The Emotion Machine, Mar-

vin Minsky refers to words that describe the mind, such as (computational) thinking

as suitcase words. We fill up these suitcase words "with far more stuff than could

possibly have just one common cause" [14]. There are various meanings to compu-

tational thinking, so the definition described in the context of this thesis does not

align perfectly with the definition of computational thinking used in other contexts. I
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urge readers to not get too caught up on inconsistencies between the definition in this

thesis compared to other work because computational thinking is simply a suitcase

word with many meanings packed into it.

We reference computational (thinking) concepts from the Scratch assessment frame-

work from Brennan 2012 [5]. This computational thinking framework consists of three

dimensions:

∙ computational concepts : concepts developers engage with as they program

(e.g. conditionals, procedures)

∙ computational practices : practices developers develop as they engage with con-

cepts (e.g. debugging)

∙ computational perspectives : perspectives developers form about the world around

them and about themselves (e.g. expressing, connecting)

Analyzing projects that users have created was shown to be effective at assessing

computational concepts. So, this thesis focuses on computational concepts present in

users’ projects.

A.3 Blocks languages are not perceived the same as

text languages

Weintrop 2015 performed a study to understand how high school students view blocks-

based programming tools, why they were perceived to be easier to use, and how they

were different from text-based programming [27]. In particular, Weintrop compared

Snap!, an extended reimplementaiton of Scratch which features the ability to create

custom blocks, with Java [22].

High school students found blocks programming easier for the following reasons:

∙ Blocks are easier to read because they appear more like English.

∙ Blocks provided visual cues such as shape and color

∙ Blocks are easier to compose and tinker with because have fewer syntactic con-

cerns (compared to text)
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∙ Blocks serve as memory aids because they are organized and students can see

them instead of having to recall them (as they would in a text language)

Students identified three differences to blocks-based and text-based programming

languages: trial and error programming , pre-fabricated commands, and visual en-

actment of progress. Students noted how Java was not conducive to trial-and-error

programming. They also noted that text-based environments lack the pre-fabricated

commands that blocks-based programming environments have. Finally, students

found blocks-languages to have greater visual affordances when being executed, a

quality that speaks more to the Snap! environment than to blocks programming

in general. Figure A-3 shows reported differences between the blocks-based Snap!

environment and Java at the mid-point and conclusion of the study.

Figure A-3: Student reported differences between Snap! and Java at mid-point and
conclusion of study (from [27]).

Students noted several drawbacks to blocks-based programming compare to text-

based programming: Less powerful, slower to author and more verbose, and inau-

thentic. Students perceived that with text-based languages "you can do a lot more"

than the limited blocks-based language. Students perceived more possibilities with

text-based languages. Furthermore, students found blocks-based environments to be

slower to author in that a statement requires multiple blocks compared to "one sen-

tence" in Javascript. It was also noted that blocks languages would be hard to work

with for larger projects because the blocks would begin to clutter the screen. Fi-
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nally, students perceived blocks-based environments as inauthentic, viewing them as

educational and teaching tools rather than "actual code."
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Appendix B

Description of Computational

Concept (CC) Block Types

Table B.1: Description of Variable Blocks

Block Type Block Image Description

global_declaration Define a global variable

and assign it a given

value.

lexical_variable_set Set variable to be equal to

input.

lexical_variable_get Returns the value of a

given variable.

local_declaration_expression Create local variable that

returns a value (expres-

sion).

local_declaration_statement Create local variable that

runs code (statement).
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Table B.2: Description of Procedure Blocks

Block Type Block Image Description

procedures_defnoreturn Define a procedure that

does not return a value

procedures_callnoreturn Call a procedure that

does not return a value

procedures_defreturn Define a procedure that

returns a value

procedures_callreturn Call a procedure that re-

turns a value

Table B.3: Description of Loop Blocks

Block Type Block Image Description

controls_forEach Runs the blocks in the

’do’ section for each item

in the list.

controls_forRange Runs the blocks in the

’do’ section for each nu-

meric value in range from

start to finish.

controls_while Runs the blocks in the

’do’ section while the test

is true.
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Table B.4: Description of Logic Blocks

Block Type Block Image Description

logic_negate Returns true if input is

false. Returns false if out-

put is true.

logic_or Returns true if any input

is true

logic_boolean Returns the boolean true

logic_false Returns the boolean false

logic_operation Returns true if all inputs

are true.

logic_compare Tests two things are equal

(or not equal)

Table B.5: Description of Conditional Blocks

Block Type Block Image Description

controls_if If the condition is true,

then execute the ’do’ sec-

tion

controls_choose If the condition is true,

return the result of eval-

uating the expression for

’then’. Otherwise, exe-

cute and return the ex-

pression in the ’else’ slot.
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Table B.6: Description of List Blocks

Block Type Block Image Description

lists_create_with Create new list that is ei-

ther empty of has items in

it

lists_add_items Add item to list

lists_is_in Return true if item is in

list

lists_length Return number of items

in list

lists_is_empty Return true if list con-

tains no items

lists_pick_random_item Return random item in

list

lists_position_in Return index of item (0 if

not in list)

lists_select_item Return item in list at

given index

lists_insert_item Insert item into list at

given index

lists_replace_item Replace item at given in-

dex of list

lists_remove_item Remove item at given in-

dex
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lists_append_list Add items in list2 to end

of list1

lists_copy Return a copy of a list

lists_is_list Return true if input is a

list

lists_to_csv_row Return CSV representa-

tion that treats list as a

row

lists_to_csv_table Return CSV representa-

tion that treats list as a

table

lists_from_csv_row Given row (in CSV text

format), return list where

each value in row is an

item in the list

lists_from_csv_table Given text in CSV table

format, return list where

each item is a list of fields

in each row

lists_lookup_in_pairs Returns the item associ-

ated with the key in the

list of pairs
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