
Investigating Novices’ In Situ Reflections
on Their Programming Process

Dastyni Loksa, Benjamin Xie, Harrison Kwik, and Amy J. Ko

University of Washington

Seattle, Washington, USA

dloksa@uw.edu, bxie@uw.edu, kwikh@uw.edu, ajko@uw.edu

ABSTRACT
Prior work on novice programmers’ self-regulation have shown

it to be inconsistent and shallow, but trainable through direct in-

struction. However, prior work has primarily studied self-regulation

retrospectively, which relies on students to remember how they reg-

ulated their process, or in laboratory settings, limiting the ecological

validity of findings. To address these limitations, we investigated

31 novice programmers’ self-regulation in situ over 10 weeks. We

had them to keep journals about their work and later had them to

reflect on their journaling. Through a series of qualitative analyses

of journals and survey responses, we found that all participants

monitored their process and evaluated their work, that few inter-

preted the problems they were solving or adapted prior solutions.

We also found that some students self-regulated their program-

ming in many ways, while others in almost none. Students reported

many difficulties integrating reflection into their work; some were

completely unaware of their process, some struggled to integrate

reflection into their process, and others found reflection conflicted

with their work. These results suggest that self-regulation during

programming is highly variable in practice, and that teaching self-

regulation skills to improve programming outcomes may require

differentiated instruction based on students self-awareness and

existing programming practices.

KEYWORDS
Programming, Metacognition, Self-regulation.

ACM Reference format:
Dastyni Loksa, Benjamin Xie, Harrison Kwik, and Amy J. Ko. 2020. Inves-

tigating Novices’ In Situ Reflections on Their Programming Process. In

Proceedings of The 51st ACM Technical Symposium on Computer Science
Education, Portland, OR, USA, March 11–14, 2020 (SIGCSE ’20), 7 pages.
https://doi.org/10.1145/3328778.3366846

1 INTRODUCTION
Self-regulation—the ability to be aware of one’s thoughts and ac-

tions, exert control over them, and evaluate how well they are

moving one closer towards a goal [17]—is important to successful

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGCSE ’20, March 11–14, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6793-6/20/03. . . $15.00

https://doi.org/10.1145/3328778.3366846

programming. In an analysis of teaching and learning program-

ming, Sheard et al. highlighted self-regulation as one of a vital set

of skills students need to achieve success at programming [19]. Fur-

ther, prior work has identified that successful learners self-regulate,

generating self-explanations of material and use them to monitor

for misconceptions [4]. Many studies also have shown that scaffold-

ing aspects of self-regulation benefits novice programmers, further

demonstrating the importance of self-regulation for successful pro-

gramming. For instance, Loksa et al. found that explicitly teaching

and scaffolding programming process can improve student pro-

ductivity, independence, and self-efficacy [12]. Similarly, work by

Bielaczyc, Pirolli, and Brown found that training in self-regulation

strategies leads to significantly greater programming performance

[3]. When it comes to expert software engineers, their systematic

and self-reflective methods are a large part of what makes them

experts [9] and these self-regulation skills manifest as the deliberate

systematic practices which expert programmers and teams use to

structure their work [15].

While self-regulation is important for programming, among

novices it is infrequent and shallow. Prior work has used retro-

spective survey data to identify self-regulated learning behaviors

such as time management, goal setting, and planning, showing that

novices rarely engage in them and when they do they often do so

in shallow, unsuccessful ways [6]. Other studies have used inter-

views, finding that low performing students use few metacognitive

or resource management strategies overall [2, 10], and that this

is often half of CS1 students. A think-aloud laboratory study on

students’ self-regulation found that learners may never engage in

many self-regulation behaviors at all, and when they do it is often

shallow, ineffective, and does not help avoid critical errors [11].

A key limitation of this prior work is that it is all done retrospec-

tively, asking students to reflect on their work after it has occurred.
Therefore, we know little about how novices self-regulate while

they program, and how this self-regulation might differ from what

they recall about their self-regulation. There are many reasons

to suspect that retrospective data might not generalize to in situ

settings. In situ programming happens in a variety of environ-

ments (office, classroom, at home), where distractions might be

more abundant. It happens in settings that are not time-regulated,

often unfolding over many hours or days across multiple contexts.

Similarly, programming may include teaching assistants, peers, and

the Internet. All of these factors may be difficult to recall retrospec-

tively, missing nuances about self-regulation that learners might

engage in, but not remember.

To investigate this generalizability gap in prior work, we stud-

ied novice students’ programming self-regulation in situ across

Paper Session: Problem Solving SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

149

https://doi.org/10.1145/3328778.3366846
https://doi.org/10.1145/3328778.3366846
Benjamin Xie
author’s copy

a 10-week series of four 2-week programming assignments. We

specifically investigated the following questions:

RQ1 When prompted to reflect on process in situ, what degree of

in situ self-regulation do learners engage in?

RQ2 What challenges do students report encountering when at-

tempting to reflect on their programming process in situ?

2 METHOD
To answer our research questions, we asked learners in a 10-week

course to write in journals during programming sessions, reflect-

ing on their problem solving and self-regulation. Using reflective

journals is one of a few methods of measuring self-regulation [21]

and have been used in CS to enhance programming skills [5]. For

this study, journals served as both a prompt to self-regulate during

problem solving and a record of the self-regulation the participants

engaged in. Therefore, rather than just exposing how students work

in the absence of being observed, our data reflects more of a best-

case scenario for programming, where there is a scaffolded prompt

to think about and write about their programming to support their

problem solving.

2.1 Course and participants
We partnered with an instructor of one section of a required front-

end web development course programming course in an infor-

mation science department of a large public research university.

Participants consisted of all 31 undergraduate students enrolled in

the course, of which all had passed at least one prerequisite pro-

gramming course covering Java and basic data structures. Of the

31 students, 25 identified as men, 6 as women. One reported being

in their 2nd year of undergraduate, 13 in their 3rd year, and 17 in

their 4th year.

The course required students to complete 4 projects over 10

weeks. The first project required students to create a personal web-

site using HTML and CSS. The second project required students

to create a web-based game written in JavaScript. For this project,

students selected the game they wanted to create and were given

a variety of suggestions from classic arcade games like Pong or

Breakout to casual mobile games like Threes or Bejeweled. The third

project of the course required students to create a data explorer

using the React framework [8] that allowed a user to interactively

explore a data set, such as that exposed by a public web API. What

API to use, what data to present, and how to present that data

was up to the student, but the project required that the app was

both responsive and accessible (perceivable to screen readers). The

fourth project for the course required students to create a messag-

ing application using the React framework and a Firebase back-end.

This project could be done individually, or in pairs, and required

user accounts, authentication, and client-side routing to create a

single-page application.

2.2 Data collection
To gather data about in situ self-regulation for RQ1, the instructor

required students to submit a programming journal for each of

their four projects. To ensure that the students had the language

to describe their self-regulation in their journals, the first author

taught students definitions of self-regulatory behaviors by giving

Programming

Behaviors

Definition

Interpret
prompt

Statements about or demonstrating

interpreting or questioning the prompt

reconsidering actions in reference to the

prompt or decomposing the problem into

goals requirements and or sub-problems.

Search for
analogous
problems

Statements about or demonstrating intent to

use code they have previously written or use

of examples from outside sources.

Adapt a
solution

Statements of or demonstrating changing or

refining code.

Evaluate Statements of or demonstrating testing or

evaluating outcomes intent to test a solution

or identifying why code was not meeting

expectations.

Self-

Regulation

Definition

Planning Statements of intended work goals or

requirements an intended order of work

Process
Monitoring

Statements of start times stop times duration

of coding session about work being started

identifying work currently in progress when

a task is complete or statements that identify

actions as part of their process.

Comprehension
monitoring

Statements identifying known or unknown

concepts or solutions.

Self-
explanation

Statements of code explanation for increased

understanding.

Reflection Statements reflecting on prior thoughts of

behaviors.

Rationale Statements that provided rational to

decisions or behaviors.

Table 1: Programming and self-regulation behaviors (from
prior work [11]) coded in the journals, with definitions.

a 20 minute lecture on the first day of class. This lecture intro-

duced a framework of problem solving that depicts programming

as a series of iterative problem solving behaviors drawn from prior

work [11]. These behaviors, shown at the top of Table 1, included

1) reinterpreting the problem prompt, 2) searching for analogous

solutions, 3) adapting previous solutions, 4) implementation, and

5) the evaluation of implemented solutions. We also described sev-

eral self-regulation behaviors from this framework, shown at the

bottom of Table 1: 1) planning, 2) comprehensionmonitoring, 3) pro-

cess monitoring, 4) self-explanation, and 5) reflecting on cognition.

(Hereafter, we refer to all behaviors in Table 1 as self-regulation

behaviors.) We provided the definitions along with the journaling

instructions on the course website for later reference.

We instructed students to journal about the start and stop times

of each coding session, their progress through the problem solving

activities in Table 1, and use the journal as a place to self-regulate in

the six different ways described in Table 1. To ensure some consis-

tency in journaling and help students understand the expectations,

we provided an example journal that demonstrated how a journal

Paper Session: Problem Solving SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

150

might cover all of the behaviors and demonstrate the level of de-

tail we expected. Because the emotions, struggles, and successes

of programming can be very personal, students were assured that

their journals would be kept anonymous and we did not enforce a

structure nor did we require journals contain specific content. This

allowed students to authentically journal about their programming

and encouraged including what they valued and expected to be use-

ful. To provide additional scaffolding for reflecting on their process,

we provided feedback on the first journal each student submitted,

identifying where they could expand on the content, clarity, and

depth of their journaling for future journals.

To understand the challenges students’ encountered when trying

to reflect on their programming process (RQ2), we required students

to fill out a survey when submitting each of their assignments and

corresponding journals. It asked two open response questions:

• Your journal is to help you reflect on your process. Review your
journal and briefly describe all points where you had trouble
reflecting on your process, and/or writing parts of your journal.

• Think back to any time in the last two weeks where you stopped
and reflected on your programming process when you were not
programming or writing your journal and found it difficult.
Describe why it was difficult.

Our primary source of data was the student journals. Despite the

journals being part of their grade, some students failed to submit

journals. In total, we collected 106 journals with a combined total

of 4,227 statements of students reflecting on their programming.

Students’ journals varied in level of detail, with some being quite

extensive, as in this example entry: "Initially I thought I was going
to pseudo code a bunch of stuff, but instead I settled for repurposing a
bunch of code from a previous exercise that takes user input and posts
messages (Chirper from a previous exercise.)" Others, in contrast,

were quite terse: "changed how I had BrowserRouter set up."

3 RESULTS
3.1 RQ1: What degree of in situ self-regulation

do learners engage in?
To answer this question, we performed three analyses:

• We coded and computed the frequency of the behaviors in

Table 1.

• We investigated whether there were distinct patterns of stu-

dent behavior through clustering.

• We analyzed students survey responses about their journal-

ing process for the “maturity” of reflection.

3.1.1 Frequency of behaviors. To understand the frequency of

self-reflective behaviors, we developed the coding scheme based on

a framework from prior work on programming and self-regulation

[11]. We coded each statement of each journal entry to identify

if it demonstrated one or more of these behaviors. To ensure the

codes we applied were well-defined and consistent, we iteratively

refined the code definition by having two authors apply the codes

to a set of 430 (10% of the total 4,227 statements) randomly selected

journal statements, using adjacent journal statements for context

if necessary. To drive refinements, we discussed disagreements,

refining definitions, and coded a new set of randomly selected jour-

nal statements. After four rounds of iteration, the authors reached

83% agreement on this sample data set. One author then coded all

remaining statements. Table 1 shows the final code definitions for

each of the self-regulation behaviors. Table 2 shows an excerpt of

one students’ journal, showing a session of writing, testing, and

refining some CSS.

Based on these codes, we computed the frequency of each type of

code in each student journal. Table 3 shows the range of the number

of codes found in journals for each behavior. The “Total” column in

Table 4 lists the total percentage of students who journaled about

each behavior at least once across all four journals. These two tables

show that most participants (>80%) journaled about the following

behaviors at least once across their four journals:

• Process monitoring (e.g. “Day Two - Start Time - 1:30 PM |

End Time 8 PM")

• Evaluating solutions (see Table 2.A,D,F,H for examples)

• Searching for analogous problems (see Table 2.E for example)

• Reflecting on their cognition (see Table 2.B,I for examples)

• Self-explanations (e.g. “ALL THAT WAS WRONG WAS THAT
I DIDN’T LINK IN THE RIGHT VERSION OF JQUERY ASD-
FGHJKL;[sic]")

• Rationale (e.g. “I think before I do that I should make the page
look prettier and better organized, because I am reusing a lot
of code for API requests")

The least common behaviors included:

• Interpreting the prompt (see Table 2.J for example)

• Adapting previous solutions (e.g. “The majority of this chat
application will come from exercise sets so I’m taking code from
those assignments and picking the components that apply to
the project")

3.1.2 Clusters of behaviors. Prior work suggests that there is

large variation in self-regulation behaviors [11]; to better under-

stand this variation, we attempted to cluster students based on

which behaviors they did and did not exhibit in their journals. We

began by computing a binary variable for each student and each be-

havior in Table 1 that was true if at least one journal exhibited that

behavior, and false otherwise. Then, we performed a visual inspec-

tion of this binary data and observed that there were potentially 3

patterns of self-regulation behavior. To verify this interpretation,

we applied the K-modes unsupervised clustering algorithm [7] to

the student data, using the binary variables as features, specifying

K=3 to separate the students into 3 clusters.

The resulting clusters, shown in Table 4, aligned with our visual

inspection. One cluster, which we will refer to as the high coverage
cluster, contained 12 participants whose journals had exhibited

at least 9 of 10 of the behaviors in Table 1. These high coverage

students typically were missing entries exhibiting the behaviors

(Interpret the prompt and Adapting solutions). Table 2 shows an

excerpt from a student in the high coverage cluster evaluating,

reflecting, and interpreting about a series of CSS problems. The

second cluster, which we will call themoderate coverage cluster, had
12 participants who journaled about the most common behaviors

(Process monitoring, Evaluating solutions, Searching for analogous

problems, Reflecting on their cognition, creating Self-explanations,
Rationale), but not the less common behaviors. The final cluster,

which we will call the low coverage cluster, had 7 participants who

Paper Session: Problem Solving SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

151

... ...

A - Evaluate Jumbotron inside a container seems too centered, made a manual "container"

B - Reflection Project became really easy after I solidified my idea for the css layout and got it mostly done

C - Friend suggested bootstrap navbar, that seems a lot easier than doing it with raw css

D - Evaluate Bootstrap navbar was stacking everything on the right

E - Search Took a while of looking through documentation, but apparently that was part of "mobile first" had to define what

size it flattens at

F - Evaluate Added pictures from my projects and a picture of my bird, think everything looks good

G - Was using a stock icon, but I have a personal logo I use in other places, I guess it fits

H - Evaluate Tried setting footer bottom to absolute 0, did not work, will just not mess with it

I - Reflection Decided to add a gradient to make it look nicer, was very surprised how easy it was and how much it improved the

look

J - Interpret, Reflec-
tion, Evaluate

Was looking through spec, realized I forgot highlights, they didn’t work for a bit until I made them really specific

Table 2: The second half of one students’ journal for the first homework, showing the codes applied from Table 1. This partic-
ipant was in the high coverage cluster.

Behavior #1 #2 #3 #4

Interpret 0-1 0-1 0-1 0-1

Search 0-7 0-2 0-2 0-3

Adapt 0-6 0-4 0-1 0-1

Evaluate 0-11 0-6 0-8 0-14

Planning 0-19 0-9 0-19 0-7

Process Monitoring 0-25 0-25 0-54 0-43

Comprehension monitoring 0-6 0-2 0-4 0-2

Self-explanation 0-24 0-17 0-13 0-9

Reflection 0-13 0-7 0-7 0-8

Rationale 0-17 0-8 0-8 0-7

Table 3: The range of student entries exhibiting each self-
regulation or programming behaviors, by assignment, show-
ing higher frequencies of evaluation, planning, process
monitoring, and self-explanation than other behaviors and
interpret only occurring once per assignment.

journaled about the fewest behaviors, with Process monitoring and

Evaluating solutions being the only behaviors all participants in

this group journaled about.

3.1.3 Maturity of reflection. Whereas our first two analyses

considered frequency of reflection and patterns in reflection activity,

our third analysis of the journals considered the “maturity” of the

reflection itself. We defined maturity as the degree to which self-

regulationwas an integrated part of students’ programming process.

To analyze maturity, we qualitatively coded the responses that

students gave to the two journaling survey questions, analyzing

how students wrote about their journaling process. Two authors

inductively coded [20] the responses, identifying varying categories

of detail in participant reflections on their process, developed a

coding scheme, and used that scheme to independently code the

survey questions. The researchers reached 88% agreement before

reviewing and reconciling discrepancies, coming to 100% agreement

on all assigned codes.

The final coding scheme consisted of three codes representing

the level of reflectionmaturity in participant responses. Participants

Code High (12) Moderate (12) Low (7) Total

Process 100% 100% 100% 100%

Evaluate 100% 100% 100% 100%

Search 100% 100% 86% 97%

Reflection 100% 100% 43% 87%

Explanation 100% 100% 29% 84%

Rationale 92% 100% 29% 81%

Planning 92% 75% 29% 71%

Comprehension 100% 33% 29% 58%

Interpret 75% 8% 0% 32%

Adapt 75% 8% 0% 32%

Table 4: The three clusters of behavior (and size of cluster).
Each percentage indicates the proportion of students in the
cluster who exhibited the behavior at least once in a journal.

who demonstratedmature reflection were those who identified indi-
cated that they were struggling with reflecting while programming

because the reflection conflicted with their process. For example,

one participant with mature reflection stated, “When I hit really
difficult bugs, I don’t want to reflect on them or journal, I just want to
look at my code and chase them down.” These participants demon-

strated a high awareness of their current process and how reflection

interfered with it. They often stated that they opted not to engage in

journaling during programming, choosing to journal after-the-fact

to meet the journaling requirement. Another set of participants we

identified was those who were actively integrating reflection into

their process. This group provided indications that they were still

developing a programming process, often reporting struggle reflect-

ing due to the task being difficult rather than because it conflicted

with any current process. For instance, one integrating participant

expressed, “It is [difficult] because that I might not remember all
the details all the time.” The final set of participants we identified
as being process-unaware. These participants stated that they did

not reflect on their process, that they had no difficulties reflecting

while providing no additional details, or responded to the ques-

tion by describing their process or a segment of code that was

difficult rather than an aspect of their process. For example, one

process-unaware participant responded, “I never really stopped and

Paper Session: Problem Solving SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

152

thought about something being hard, I just started looking through
google/documentation.”

To understand the distribution of these different levels of ma-

turity, we assigned participants to one of these categories based

on the highest frequency of codes they received each code across

all 8 (2 questions per survey, 4 surveys) survey responses. Codes

across all responses for each participant were fairly stable, most

participants only receiving one or two codes across all 8 responses.

In cases of a conflict, we assigned participants to the group with

the higher level of reflection maturity. In total 10 participants’ were

mature, 17 participants’ were integrating, and 2 participants were

process-unaware.
Finally, we hypothesized that there would be a relationship be-

tween students’ maturity of self-regulation and the patterns of

journaling behavior indicated by our clusters. To test this hypothe-

sis, we preformed a Pearson’s chi-squared analysis and did not find

a significant association (p=0.2664).

3.2 RQ2: What did students report was
challenging about reflecting?

To analyze the challenges that students reported writing their jour-

nals, we inductively identified themes in students survey responses.

Two authors used an inductive coding approach, independently

identifying themes in the open ended survey responses to the

questions about what difficulties students found reflecting. The

researchers used the themes to define a code book which they used

to independently code the entire set of survey responses, and found

100% agreement.

Our results identified three ways that participants struggled

to reflect on their programming process. One struggle students

reported having while trying to reflect was that the concept of a

programming process was too abstract. Participants appeared not to
be practiced in thinking about their own thinking. For instance, one

participant responded, “It was difficult to think of how I was actually
trying to solve things.” Another challenge that many participants

encountered was that it was difficult to recall details about their
mental work. For example, one participant said, “Many thoughts
that I have about coding come by very quickly, and it’s difficult for
me to recall small but important influencers that cause me to change
how I build something.” Another challenge we identified was that

reflecting on their process actually conflicted with their process. As

one participant explained, “It was really difficult to remove myself
from my workflow and constantly having to switch between my
journal and my code; it broke my workflow and made me work slower.”

4 LIMITATIONS
As with any empirical study, ours had many limitations. First, all

studies of this kind could benefit from more data. Our findings are

limited to what we could qualitatively see from a single program-

ming coursewith 31 students.While appropriate to identify patterns

for students in this course, it is not enough data to identify all of the

significant patterns of human self-regulation. Another limitation is

the type data itself. There exists no way to directly measure cogni-

tive processes. Attempting to expose and understand the mental

work of programmers through journals and self-reported reflections

is one of a few mechanisms for understanding self-regulation [21].

However, the act of presenting participants with the framework

of behaviors and asking them to self-report certainly interacted

with their behavior. Also, the robustness of journals as mechanism

to observe self-regulation varies due to participants’ ability and

willingness to express their inner thoughts. Conducting this study

in an authentic classroom setting also means our data is entan-

gled with many uncontrolled variables. These include, but are not

limited to, programming task properties (e.g. difficulty), student

prior experience, time pressures, distractions, amount of guidance

received on tasks, and access to a computer.

5 DISCUSSION
Answering RQ1, we found the following: All participants monitored

their Process and Evaluated their solutions. About one third of the

participants only engaged in those two behaviors, while another

third engaged in nearly all of the self-regulation behaviors. Students

almost never engaged in Interpreting the prompt and Adapting pre-

vious solutions, and when they did, they typically engaged in all

self-regulation behaviors. We also found that students were either

process-unaware, were struggling with integrating reflection into

their process, or had a mature programming process that conflicted

with reflection. Finally, we found that participants struggled re-

flecting on their process because it was too abstract to think about,

they had problems recalling details about their process, or because

reflecting conflicted with their current process.

5.1 Interpretation of results
One of the challenges participants reported when reflecting was

that the concept of a programming process was too abstract for
some participants to meaningfully reflect on. This could be because

the training we provided, which included definitions and examples

for all of the behaviors, was simply inadequate for some students.

Another interpretation is that participants where simply not very

aware of their process and, thus, had problems identifying and un-

derstanding the mental behaviors they were engaging in. Because

metacognitive awareness is something that must be developed over

time [18], we suspect that it was likely a combination of these two

interpretations. We suspect that the challenge of recalling detail of

their mental work was also due to a lack of experience thinking

about their own thinking. The challenge that reflecting conflicted
with their process, however, we believe the self-reports that par-

ticipants already had a programming process they have found to

be successful which was hindered by reflecting. Together, these

challenges suggest that reflecting on programming process may

be a method best used for rank novices, before they have begun

to develop a process of their own, and that reflection of this sort

requires careful training and scaffolded practice.

While we were able to identify and rank behaviors by how fre-

quently students engaged in them, this says little about what this

ranking actually means. One interpretation is that the rank reflects

the order in which behaviors are developed or relied upon mean-

ingfully to solve programming problems. It could be that students

must first develop their skills of Process monitoring and Evaluating
their solutions, which all participants engaged in, in order to gain

enough awareness of their other process behaviors. Alternatively,

just because a behavior is engaged in does not mean it is done

Paper Session: Problem Solving SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

153

so meaningfully. Prior work on self-regulation identified that the

Planning and Comprehensionmonitoring behaviors may be the first

self-regulation behaviors to help students avoid errors [11]. In our

data, however, Planning and Comprehension monitoring were not
among the most engaged in behaviors. This could mean that, while

these behaviors are undoubtedly important, students often do not

rely upon them; they may need to develop other skills first. Another

interpretation of the behavior rankings is that it simply highlights

the behaviors that are the easiest to be aware of engaging in. This
would mean that novices are simply not aware of many behav-

iors, or do not engage in them at all. For instance, few participants

reflected on Interpreting or Adapting. From this we can take that

novices simply do not take the time to understand the problem they

are attempting to solve and do not, or are not aware of, adapting

prior knowledge or examples to help craft a solution. This interpre-

tation aligns with prior work finding that novices often begin to

code before understanding the problem [1] and that they have a

difficult time leveraging solutions to similar problems to solve their

current problem [4, 13].

There are many reasons why the maturity levels (mature, inte-
grating and process-unaware) might not have been associated with

the clusters. One explanation is that it was an instrument failure,

since the survey questions from which we derived this measure

were not originally intended to measure process awareness. How-

ever, another explanation is that one’s ability to reflect on, and

journal about, programming process is highly contingent on a sec-

ond mechanism; metacognitive awareness of process. Following this
interpretation, we might expect that it could require little-to-no pro-

cess awareness to simply monitor mental work and identify when a

behavior is being engaged in. A participant who is skilled in moni-

toring mental work in situ, but lacking a greater awareness of their

process might, then, be classified as a high coverage participant

and be process-unaware. Conversely, a participant who has mature
process awareness, even if that awareness concludes that they have

a poor process, may lack practice monitoring mental work, or may

not be able to expend the mental effort to monitor their process in

situ, and thus may exhibit low coverage of self-regulation behaviors.

Our data confirms prior work on novice programmers’ self-

regulation. Prior work conceptualizes developing programming

expertise as a series of “levels” [14]. This prior work argues that

“level 2” students should value decomposing program goals (which

we identify as Interpreting the prompt) but that their process is

insufficient for larger programs and that their primary focus is get-

ting a program to work. The authors indicate that “Level 3” is when

students develop some appreciation for the process of designing a

successful program, and thus, more robust process awareness. In

the context of this prior work, our participants would be categorized

as attempting to move from level 2 (code generators), to level 3 (pro-

gram generators). This is a fairly appropriate characterization of

our participants, who may have only taken one previous program-

ming course and are now learning to develop larger front-end web

applications. Our results, too, support this classification. The type

and variation of self-regulation and awareness of programming

process in our results are appropriate for students transitioning

between level 2 and level 3.

Our results also provide further insights into prior work. Liao et

al. identified that high preforming CS students use more metacog-

nitive strategies [10]. While this work provides strategy differences

between high and low students, such as exam studying and help

seeking strategies, our results suggest what self-regulation behav-

iors might be driving those strategies.

5.2 Implications and future work
Our results have important implications for future self-regulation in-

terventions and research. Our results suggest that educators seeking

to scaffold the development of self-regulation skills should strongly

consider the robustness of students’ current self-regulation skills.

The challenges reported by our participants demonstrate that in-

terventions intended to help build self-regulation skills may act to

needlessly slow down and hinder students’ ability to be produc-

tive. Alternatively, students that would fall into the high coverage
or moderate coverage clusters may disregard the intervention in

favor of their current workflows resulting in wasted efforts with

no benefits. Additionally, without careful training and scaffolded

practice low coverage students may struggle to begin to develop

necessary self-regulation skills at all, remaining in a state of low
coverage. Instead, educators may want to have tiered, faded scaf-

folding, systems that first carefully train low coverage students in
self-regulation skills and the ability to reflect on them, helping them

to achieve moderate awareness. Additionally, educators might want

to take into account the self-regulation behaviors that students are

more and less apt to engage in. Some work is already attempting to

emphasize the importance of developing the Interpreting the prompt
from the beginning [16] and similar efforts might be needed for

Adapting to help student be more aware of their process and help

them more quickly achieve high coverage levels of self-regulation.
We believe further research into understanding the development

of novice programmers’ self-regulation is warranted. First, future

work should replicate our findings in other authentic programming

settings, using other programming languages, and in other cultures.

Future work should refine the training and instruments used in our

study to more accurately measure self-regulation in situ. Future

work should leverage our awareness cluster findings as a basis

for further investigations on the development of self-regulation

skills in programming. Future work should also explore the order

in which novices develop particular self-regulation behaviors. Sim-

ilarly, future work should investigate any connection between the

categories of reflection and the clusters of behavior coverage.

Despite the limitations on the validity and generalizability of

our results, our findings are an important step in understanding

the in situ self-regulation of novice programmers. With further

research, improved instruments, and refined theories, we hope for

a future where educators understand self-regulation development

and leverage that understanding to support the development of

robust self-regulation skills for all students.

6 ACKNOWLEDGEMENTS
This workwas supported in part by the National Science Foundation

(NSF) under grants 1703304, 1735123, and 12566082. Any opinions,

findings, conclusions or recommendations are those of the authors

and do not necessarily reflect the views of the NSF.

Paper Session: Problem Solving SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

154

REFERENCES
[1] Carl Martin Allwood. 1986. Novices on the computer: a review of the literature.

International Journal of Man-Machine Studies 25, 6 (1986), 633–658.
[2] Susan Bergin, Ronan Reilly, and Desmond Traynor. 2005. Examining the role of

self-regulated learning on introductory programming performance. In Proceedings
of the first international workshop on Computing education research. ACM, 81–86.

[3] Katerine Bielaczyc, Peter L Pirolli, and Ann L Brown. 1995. Training in self-

explanation and self-regulation strategies: Investigating the effects of knowledge

acquisition activities on problem solving. Cognition and instruction 13, 2 (1995),

221–252.

[4] Michelene TH Chi, Miriam Bassok, MatthewW Lewis, Peter Reimann, and Robert

Glaser. 1989. Self-explanations: How students study and use examples in learning

to solve problems. Cognitive science 13, 2 (1989), 145–182.
[5] Ryan Chmiel and Michael C Loui. 2003. An integrated approach to instruction in

debugging computer programs. Vol. 3. IEEE.
[6] Katrina Falkner, Rebecca Vivian, and Nickolas JG Falkner. 2014. Identifying

computer science self-regulated learning strategies. In Proceedings of the 2014
conference on Innovation & technology in computer science education. ACM, 291–

296.

[7] Zhexue Huang. 1997. A fast clustering algorithm to cluster very large categorical

data sets in data mining. DMKD 3, 8 (1997), 34–39.

[8] Facebook Inc. [n. d.]. React: A JavaScript library for building user interfaces. ([n.

d.]). http://reactjs.org/

[9] Paul Luo Li, Andrew J Ko, and Jiamin Zhu. 2015. What makes a great soft-

ware engineer?. In Proceedings of the 37th International Conference on Software
Engineering-Volume 1. IEEE Press, 700–710.

[10] Soohyun Nam Liao, Sander Valstar, Kevin Thai, Christine Alvarado, Daniel Zin-

garo, William G. Griswold, and Leo Porter. 2019. Behaviors of Higher and Lower

Performing Students in CS1. In Proceedings of the 2019 ACM Conference on In-
novation and Technology in Computer Science Education (ITiCSE ’19). ACM, New

York, NY, USA, 196–202. https://doi.org/10.1145/3304221.3319740

[11] Dastyni Loksa and Andrew J Ko. 2016. The role of self-regulation in programming

problem solving process and success. In Proceedings of the 2016 ACM Conference

on International Computing Education Research. ACM, 83–91.

[12] Dastyni Loksa, Andrew J Ko, Will Jernigan, Alannah Oleson, Christopher J

Mendez, and Margaret M Burnett. 2016. Programming, problem solving, and self-

awareness: effects of explicit guidance. In Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems. ACM, 1449–1461.

[13] Briana B Morrison, Lauren E Margulieux, and Mark Guzdial. 2015. Subgoals,

context, and worked examples in learning computing problem solving. In Pro-
ceedings of the eleventh annual international conference on international computing
education research. ACM, 21–29.

[14] Roy D Pea and D Midian Kurland. 1984. On the cognitive effects of learning

computer programming. New ideas in psychology 2, 2 (1984), 137–168.

[15] Marian Petre. 2009. Insights from expert software design practice. In Proceedings
of the the 7th joint meeting of the European software engineering conference and
the ACM SIGSOFT symposium on The foundations of software engineering. ACM,

233–242.

[16] James Prather, Raymond Pettit, Brett A Becker, Paul Denny, Dastyni Loksa, Alani

Peters, Zachary Albrecht, and Krista Masci. 2019. First Things First: Providing

Metacognitive Scaffolding for Interpreting Problem Prompts. In Proceedings of the
50th ACM Technical Symposium on Computer Science Education. ACM, 531–537.

[17] R Keith Sawyer. 2006. The new science of learning. The Cambridge handbook of
the learning sciences 1 (2006), 18.

[18] Gregory Schraw. 1998. Promoting general metacognitive awareness. Instructional
science 26, 1-2 (1998), 113–125.

[19] Judy Sheard, S Simon, Margaret Hamilton, and Jan Lönnberg. 2009. Analysis of

research into the teaching and learning of programming. In Proceedings of the
fifth international workshop on Computing education research workshop. ACM,

93–104.

[20] David R Thomas. 2003. A general inductive approach for qualitative data analysis.

(2003).

[21] Barry J Zimmerman. 2008. Investigating self-regulation and motivation: Histori-

cal background, methodological developments, and future prospects. American
educational research journal 45, 1 (2008), 166–183.

Paper Session: Problem Solving SIGCSE ’20, March 11–14, 2020, Portland, OR, USA

155

http://reactjs.org/
https://doi.org/10.1145/3304221.3319740

	Abstract
	1 Introduction
	2 Method
	2.1 Course and participants
	2.2 Data collection

	3 Results
	3.1 RQ1: What degree of in situ self-regulation do learners engage in?
	3.2 RQ2: What did students report was challenging about reflecting?

	4 Limitations
	5 Discussion
	5.1 Interpretation of results
	5.2 Implications and future work

	6 Acknowledgements
	References

