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ABSTRACT

Tests serve an important role in computing education, measuring
achievement and differentiating between learners with varying
knowledge. But tests may have flaws that confuse learners or may
be too difficult or easy, making test scores less valid and reliable. We
analyzed the Second Computer Science 1 (SCS1) concept inventory,
a widely used assessment of introductory computer science (CS1)
knowledge, for such flaws. The prior validation study of the SCS1
used Classical Test Theory and was unable to determine whether
differences in scores were a result of question properties or learner
knowledge. We extended this validation by modeling question diffi-
culty and learner knowledge separately with Item Response Theory
(IRT) and performing expert review on problematic questions. We
found that three questions measured knowledge that was unrelated
to the rest of the SCS1, and four questions were too difficult for our
sample of 489 undergrads from two universities.
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1 INTRODUCTION: IMPROVING
MEASUREMENT OF CS KNOWLEDGE

Assessment is key to measuring knowledge, skills, and abilities
related to computing [34]. For an instructor, assessments can differ-
entiate between students’ level of knowledge, helping personalize
instruction. For learners, assessments can help them identify what
they do and do not understand. For researchers and instructional
designers, assessments can help measure the effect of interventions.

One recent and widely-used assessment is the Second Computer
Science 1 (SCS1) concept inventory. The SCS1 was developed by
Parker, Guzdial, & Engleman [26] as a replication to another concept
inventory [33, 35]. The SCS1 is a multiple-choice exam which covers
introductory computer science (CSI) knowledge, but does so with
a language-independent pseudo-code. In the three years since the
SCS1 was published, researchers have used it to measure students’
CS1 knowledge before and after a course [12, 26, 36, 37] as part
of pre-test/post-test studies [4], CS teachers’ knowledge [26], and
pre-CS1 students’ knowledge [23].

The SCS1 is one of few CS concept inventories that has under-
gone validation to evaluate the validity and reliability of its test
scores [26]. Validation is a process that involves evaluating the
plausibility and appropriateness of proposed interpretations and
uses of assessment scores [11, 13]. The validation process involves
iteratively developing an assessment and an argument that specifies
how to interpret assessment scores, and then challenging the argu-
ment to identify further improvements to the argument. Validation
studies can identify if a test is too easy or too difficult for the target
population [1], as well as whether surface features of questions [6]
(e.g. wording of problem, style of code) confound the score [5, 16].

Through validation, we can produce evidence (empirical, theo-
retical, and argumentative) to support the interpretations of test
scores for a proposed use. This evidence can better inform us as
to which test questions are most effective at differentiating high-
and low-performing students, helping us to further refine both
specific questions and the set of questions included in the test as
a whole. Ultimately, this evidence builds a case for the validity of
interpretations of SCS1 scores as a measure of CS1 knowledge.

Validation is an iterative process, so we extended the prior val-
idation study of the SCS1 to better understand how it measures
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test-takers. Parker, Guzdial, & Engleman [26] evaluated the SCS1
following Classical Test Theory (CTT)! [1], but CTT has limitations
which make results challenging to interpret and generalize.

In this paper, we extended the validation of the SCS1 using Item
Response Theory (IRT) [8], a widely used technique in the field
of psychometrics. By using IRT, we can produce evidence on the
quality of the SCS1 which can better generalize to the population of
CS1 learners and distinguish between question difficulty and learner
knowledge. We sought to answer the following questions: RQ1: Do
all the SCS1 questions measure the same underlying construct (CS1
knowledge)? RQ2: For what levels of CS1 knowledge does the SCS1
measure well? RQ3: How closely do the difficulty levels of the SCS1
questions align with the knowledge levels of our sample group? RQ4:
What do the response patterns of problematic questions reveal?

2 IRT VS. CLASSICAL TEST THEORY

Classical test theory (CTT) assumes a model where a learner’s
observed score is a combination of their unobserved true score
and a certain amount of measurement error [24]. CTT attempts to
measure this error by deriving test parameters on the basis of total
scores for the learners in the sample [1]. CTT is useful as an initial
analysis of data [11] but has three major limitations: 1) statistics
such as test reliability, item difficulty, and item discrimination are
sample-dependent [1, 38], 2) a learner’s test score is an unspecified
(at least in CTT) combination of a learner’s knowledge and question
properties (e.g. difficulty) [38]; 3) the model of observed score being
a composite of true score and error is unfalsifiable [20].

In contrast, Item Response Theory [8, 20] provides more sample-
agnostic statistics which estimate learner knowledge and question
properties separately using falsifiable models. IRT analyzes each
question and each learners’ performance on a question separately,
estimating question-level and test-level parameters, as well as learn-
ers’ knowledge levels. This provides unique estimates of the diffi-
culty and discrimination of each question for learners of different
knowledge levels. Furthermore, these estimates generalize beyond
the specific sample of learners. It does this by estimating the cor-
respondence between unobserved latent variables (e.g. people’s
CS1 knowledge, difficulty of questions) and observable evidence
of knowledge (e.g., people’s responses to questions). By fitting
response data to a model (e.g. logistic or multinomial), we can esti-
mate question parameters (e.g. difficulty) with fewer assumptions
about the characteristics of the sample. We can also make predictive
statements about learner performance based on knowledge level.

IRT helps reason about the relationship between question dif-
ficulty and learner knowledge by placing people and questions
on the same (typically unidimensional) continuum. It is centered
at 0, which represents the ability level (herein knowledge level?)
for the average test-taker of the population. If a test-taker’s pre-
dicted knowledge level is greater than the difficulty of the question,
they are more likely to get the question correct. Figure 1 shows
an example of such a continuum. This continuum helps model the

!Sec. 3.2 of [26] mentioned “IRT analysis" of the SCS1, but we interpreted this as
item-level analysis that follows CTT.

2We avoided using common IRT terms for comprehensibility. We will refer to items as
questions, the instrument by name or as a fest, the latent construct as CS1 knowledge,
the item parameter as difficulty and the person parameter as knowledge level, or
knowledge/difficulty when showing the latent variable continuum.
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relationship between a learner’s latent knowledge level and their
observed item performance as a monotonically increasing function.

A: v B vC(C: X%

easy avg. hard
C(;B C_

Figure 1: Representation of latent variable continuum with
3 questions (A, B, C). Because this learner’s knowledge level
is greater than the difficulties of A and B, we would predict
they get those questions correct. Their level is lower than C’s
difficulty, so we predict they get that question wrong. Zero
reflects the knowledge level for the average test-taker.

Within IRT, a useful test question differentiates well between
people located at different points on the continuum (having differ-
ent knowledge levels) [8]. A question differentiates best between
learners who have knowledge levels nearer to its difficulty. For most
IRT models, the estimated difficulty of a question is the knowledge
level at which a learner has an even chance (i.e. 50% probability) of
answering correctly. Referring back to Figure 1, question B would
better differentiate between learners with average knowledge levels
(around 0), meaning some people would get B correct and others
would not. In contrast, question A would be too easy to provide
useful information about learners with an average knowledge level
(almost everyone would get A correct). In addition to difficulty,
some IRT models (including three models fitted below) estimate
discrimination for each test question. Discrimination is how well a
question distinguishes between knowledge levels—a high discrimi-
nation value means the probability of a learner answering correctly
changes significantly based on their knowledge level. With discrim-
ination, we can see if questions at the same difficulty level provide
more or less information about learners’ knowledge.

3 DATA: HUNDREDS OF SCS1 RESPONSES

The data we analyzed with IRT were responses to the SCS1, a 27
question multiple choice assessment of CS1 knowledge [26, 35].
The SCS1 covered nine concepts: basics, conditionals, definite/for
loops, indefinite/while loops, logical operators, arrays, recursion, func-
tion parameters, and function return values. We began with SCS1
responses from 507 undergrad students about to begin 1 of 3 dif-
ferent courses at the University of Washington, Seattle (UW) and
Georgia Institute of Technology (GT), large public universities in
the United States. The data were collected for studies which used
the SCS1 as a pre- and post-test to measure learning outcomes for
different CS courses. We choose to analyze only pre-test data so
the differences in interventions would not affect responses. Two
of these courses (at different universities) administered the SCS1
within the first week of a CS1-level course, so we referred to these
learners as pre-CS1. The third course administered the SCS1 within
the first week of a CS2-level course (client-side web development),
so we referred to these students as pre-CS2.

We only considered responses from test-takers who spent 10-70
minutes taking the SCS1. We chose the lower bound in the time
limit to attempt to filter out random guessing; we choose the upper
bound because the SCS1 is only supposed to take one hour.
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We also only considered test-takers who attempted at least 10
questions. The online format of the SCS1 made it such that learners
could only see one question at a time and could not continue until
they selected an answer, potentially forcing them to guess. So as
soon as a test-taker stopped responding to a question, all further
questions were left unanswered. Thus, the number of non-responses
was monotonically increasing. So, we used the elbow method [29]
to identify a cutoff of 10; after filtering by time and attempted
questions, the number of responses decreased from 507 to 489.

Our sample had 118 responses from UW (54 pre-CS1, 64 pre-CS2)
and 371 responses from GT (all pre-CSE1). While most of the sample
were about to begin a CS1 course, surveys indicated that many had
prior programming experience. At least half of the pre-CS1 learners
from UW had prior programming experience (27/54 respondents),
typically in the form of a high school course or independent learn-
ing. We only had demographic information for learners from UW,
which was self-reported and had some non-response. Half (60/118)
of the UW students identified as male, 38% as female, and 1 student
as non-binary; the ratio of male to female was approximately equal
between the pre-CS1 and pre-CS2 courses. Over 70% (87/118) were
between 18-22 years old, with the remainder being older; most of the
older respondents were pre-CS2. Survey respondents were predom-
inantly Asian/Pacific Islander 46% (55/118) or 31% White/Caucasian,
with only 6% reporting as minority or multi-ethnic. Java was most
commonly known programming language, with 55% (66/118) of
respondents reporting at least minimal proficiency in it; a majority
of them were pre-CS2. We had no demographic data from GT.

4 IRT ANALYSIS: MODELING W/ 2PL

To understand how well the SCS1 measured achievement, we veri-
fied IRT assumptions then fit the response data to a logistic model.

4.1 Verifying IRT assumptions

4.1.1  Verifying conditional item independence. This assumption is
that responses to a question are independent of responses to any
other item, conditional on the learner’s achievement level. This
assumption enables us to calculate the probability of a response
pattern by taking the product of the product of the probabilities of
each individual response.

We justify conditional item independence through argumenta-
tion. While carryover effects [1] between questions are to some
extent inevitable, we argue that conditional item independence
is still valid because the online medium of the SCS1 exam only
allowed respondents to see one question at a time. Furthermore,
navigating back to previously attempted questions was difficult, as
respondents would have had to go linearly back across previous
questions and the questions pertaining to the same concept tended
to be separate from each other. So, we assumed conditional item
independence to be true.

4.1.2  RQI: Verifying unidimensionality with CFA. The second as-
sumption is unidimensionality, which states that only one unob-
served “trait" is being measured by all of the questions [8, 31].
While the SCS1 measures nine concepts, unidimensionality would
suggest that they are all related through the underlying trait of
CS1 knowledge. This assumption allows us to use more standard
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IRT models that assume that achievement level is a singular con-
struct that translates monotonically to more correct responses (i.e.
a learner higher in the trait will generally answer more questions
correctly). If the unidimensionality assumption were not valid, then
more complex multidimensional IRT (mIRT) would be required [9].

To test whether a unidimensional IRT model was an acceptable
for the SCS1, we conducted a confirmatory factor analysis (CFA).
CFA, tests whether the relationship observed between variables in
the collected data fits a predefined relationship. Because the goal is
to see whether a unidimensional model is acceptable, each of the 27
SCS1 questions was specified to load onto a single latent variable,
CS1 knowledge. The hypothesis was that a single underlying factor
will explain sufficient observed variation in all questions.

The CFA was fit in R using the cfa function [28]; because test
responses are dichotomous, we chose diagonally weighted least
squares (WLSMV) as the estimation method. This method assumed
that the underlying factor is normally distributed, but does not
assume that the observed variables are [19]. To make the model
identified, the variance of the latent factor was constrained to 1, so
that factor loadings could be estimated for all questions.

Model fit appeared good. The model y? tested the hypothesis
that the model fits the data perfectly. y?(324) = 356.01 (p=0.11),
so we failed to reject that hypothesis. The comparative fit index
(CFI), which compares the fit of our model to a null model, was 0.98
(> .90 is acceptable). The root mean square error of approximation
(RMSEA) measures model fit with a penalty for more complex mod-
els. We found RMSEA = .014, which is acceptable (< 0.1). Finally,
the standardized root mean square residual (SRMR) is based on the
overall difference between the observed and estimated correlation
matrices. We found SRMR = .079, which is also acceptable (< 0.8).
These values all indicate acceptable model fit [14, 30], meaning one
factor likely explains variation in these test items.

Table 1 shows the standardized factor loadings for each item,
which can be interpreted as regression coefficients. For example,
squaring the loading of Q3 (0.58) shows that CS1 knowledge ex-
plains ~ 34% of the variation in scores for Q3. We found that a
majority of the items had weak to moderate direct effects from the
factor. Q20, 24, and 27 all showed poor loading on the factor. In
addition to being low magnitude, each of those loadings were not
found to be significantly different from zero. These particular items
did not appear to be related to the factor of CS1 knowledge.

Table 1 also shows the change in Cronbach’s « for each item.
Cronbach’s « is a measure of internal-consistency reliability. We
found that @ = 0.700, an acceptable level given the SCS1 is primarily
used for research and is not a high-stakes test [18, 25]. The table
shows the change to « if a question is removed, which we would
expect to be negative. If « actually increased, that would suggest
that question is potentially problematic as the internal consistency
of the SCS1 improved. We found that « increased when the same 3
questions which had poor factor loadings (20, 24, 27) were removed.

The residual covariance matrix also suggested that questions 20,
24, and 27 fit poorly. So, we removed these questions.

After dropping these 3 questions and re-running CFA, the o
improved to 0.723. Omitting these questions also resulted in a better
fitting model, y%(252) = 271.9, p=0.19, CFI = 0.99, RMSEA = .013,
and SRMR = .076. These fit indices suggest that a single factor of CS1
knowledge sufficiently explained variation in the SCS1 questions.
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Table 1: Standardized factor loadings and change in « lev-
els for SCS1 questions. High loading is ideal, suggesting a
strong association between a question and the underlying
factor (CS1 knowledge). o should be non-increasing.

Num Factor loading Cl.lange Num Factor loading Change

(w/ std. error) ina (w/ std. error) ina
1 0.49 (0.06) -0.02 15 0.31 (0.08) 0.00
2 0.36 (0.06) -0.01 16 0.68 (0.06) -0.02
3 0.58 (0.05) -0.02 17 0.46 (0.07) -0.01
4 0.43 (0.08) -0.01 18 0.16 (0.08) 0.00
5 0.29 (0.09) 0.00 19 0.68 (0.05) -0.02
6 0.35 (0.06) -0.01 20** 0.07 (0.08) +0.01
7 0.46 (0.08) -0.01 21 0.29 (0.07) 0.00
8 0.39 (0.07) -0.01 22 0.35 (0.07) -0.01
9 0.55 (0.06) -0.02 || 23 0.43 (0.06) -0.01
10 0.41 (0.06) -0.01 24* 0.04 (0.08) +0.01
11 0.38 (0.07) -0.01 || 25 0.28 (0.06) 0.00
12 0.54 (0.06) <002 || 26 0.43 (0.07) -0.01
13 0.24 (0.08) 0.00 27 -0.05 (0.07) +0.01
14 0.47 (0.06) -0.01

** denotes a problematic question dropped from our analysis

4.2 IRT Model Fitting

After verifying the IRT assumptions of unidimensionality and local
independence, we fit the response data to models. To evaluate ques-
tion difficulty and discrimination, we fit the data to dichotomous
IRT models with increasing number of parameters. More complex
models tend to fit data better, but tend to be less generalizable.
Therefore, we choose to fit four common models beginning with
the simplest. We fit the Rasch, 1 Parameter Logistic (1PL), 2 Param-
eter Logistic (2PL), and 3 Parameter Logistic (3PL) models [8] to the
data with question. fit function from the Itm package in R [27].
We assessed model performance using Akaike information criterion
(AIC) and Bayesian information criterion (BIC) [15]. Information
criteria transform the log-likelihood of a model by penalizing more
complex models (models with more estimated parameters). These
criteria can be used to compare similar models to ensure the best
fit with the simplest model. We used a y? test to check question fit.

Table 2 compares model performance. We selected the 2PL model
because all 24 questions fit. We found it unusual that the 2PL model
reported a greater BIC than the less complex Rasch and 1PL models,
but we decided having all the questions fitting was more important.

Table 2: Dichotomous model performance. 2PL fit best.

Model AIC BIC Questions that do not fit model
rasch 13104.7 13205.3 3,19

1PL 13063.7 13168.5 3,9,16,19,23

2PL  13018.3 13219.6 (all questions fit)

3PL 12974.2 13276.1 3,6,22

For 2PL, the probability of learner x getting question j correct
given a learner’s knowledge level 0, question difficulty «;, and
question discrimination &; is p(x; = 1|0, &}, 6;) = %.

While we present results for pre-CS1 and pre-CS2 students to-
gether, we also used CTT to ensure that any issues we identified
were consistent between the two groups. We used CTT measures
because did not have appropriate sample sizes to model pre-CS1
and pre-CS2 students separately with IRT.
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Table 3: Question parameters for 2PL model. Questions
should have |§;| < 3 and «; > 0, with ** denoting issues.

j 51' (SE) aj (SE) j 5] (SE) aj (SE)

1 1.16 (0.2)  0.91(0.15) || 13" 3.99(1.34) 0.40 (0.14)
2 0.89(0.23) 0.63(0.13) || 14  1.13(0.21)  0.82(0.14)
3 0.27 (0.1)  1.26(0.19) || 15** 3.11(0.81)  0.51 (0.14)
4 2.26 (0.42)  0.73(0.15) || 16 1.28(0.16)  1.35(0.2)

5% 3.91(1.13) 0.49(0.15) || 17 1.68(0.29)  0.81(0.15)
6 0.99 (0.25)  0.59 (0.13) || 18** 5.07 (2.55) 0.25 (0.13)
7 2.33(0.41)  0.79 (0.16) || 19 0.74 (0.11)  1.53(0.22)
8 1.60 (0.33)  0.66 (0.13) || 21 158 (0.44)  0.47 (0.12)
9 1.16 (0.18)  1.00 (0.16) || 22 1.36 (0.33)  0.57 (0.13)
10 1.27(0.27)  0.68(0.13) || 23 0.08 (0.13)  0.79 (0.14)
11 1.90(0.39) 0.63(0.14) || 25 0.78 (0.28)  0.47 (0.12)
12 0.63(0.13)  1.06 (0.17) || 26 177 (0.31)  0.78 (0.15)

4.3 Difficulty & Discrimination (RQ2)

Table 3 shows the 2PL model parameters and their standard error
(SE). The difficulty means that a learner with exactly that knowledge
level should have a 50% chance of answering correctly. Because most
questions have a positive difficulty (§;) and 0 represents the average
knowledge, the SCS1 is a difficult test. Question difficulty (and
learner knowledge) represents the number of standard deviations
from the mean (z-score). So, difficulty should range from -3 to 3,
theoretically accounting for > 99.9% of learners’ knowledge levels.

We found that Q5, 13, 15, and 18 are potentially too difficult. For
these four questions, only 12-21% of pre-CS1 students got them
correct, confirming these questions as being difficult for pre-CS1
students. For the pre-CS2 students, the more difficult questions
were Q15 (19% got correct) and Q13 (25%), whereas Q5 (30%) and
Q18 (31%) were still difficult but perhaps acceptably so.

The discrimination parameter (a;) tells us how effectively a ques-
tion differentiates among learners located near that question’s diffi-
culty. More specifically, we can interpret the discrimination to say
that a greater a; means that question j provides more information
about learners with a knowledge level near the question’s diffi-
culty (6;), but this information more rapidly decreases for learners
further away from the question’s difficulty. Visually, a larger dis-
crimination parameter translates to a steeper logit regression line,
such as Q19 in Figure 2. Q19 does an excellent job distinguishing
between learners around 0.75, but provides almost no information
for learners above 2 or below 0 (average).

While a great discrimination parameter is desirable, there is
disagreement on which values are “acceptable” For example, de
Ayala 2009 defined 0.8-2.5 as an acceptable discrimination param-
eter range [8], whereas Baker 2001 defined 0.01 — 0.34 as “very
low” and 0.35 — 0.64 as “low” discrimination [2]. We flagged Q13
(a13 = 0.40) and Q18 (a3 = 0.25) as having potentially prob-
lematic discrimination because their discrimination parameters
were the lowest among all questions. We used point-biserial cor-
relations (a CTT measure of discrimination [1]) to check discrim-
ination for pre-CS1 and pre-CS2 students separately. Both Q13
and Q18 had a low point-biserial correlation (< 0.30) for both
pre-CS1 (rpre—cs1,013 = 0.10,rpre—cs1,018 = 0.18) and pre-CS2
(rpre-cs2,013 = 0.20,7pre-cs2,018 = 0.28) students. Because
these questions have high difficulty and pre-CS2 learners had more
knowledge, it followed that the discrimination for pre-CS2 students
were slightly higher (but still too low).
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4.4 Estimates of learner knowledge (RQ3)

To better contextualize the difficulty of the SCS1, we used our 2PL
model to estimate learner knowledge, something that IRT can mea-
sure but CTT cannot. Learner knowledge estimates are summary
measures of the posterior distribution of CS1 knowledge condi-
tioned on estimates of question difficulty and observed learner
performance [8]. We used 1tm: : factor.scores() [27] with the
mean of the posterior distribution as our estimator [3].

Figure 3 shows the relationship between learner knowledge
and question difficulty. The estimated learner knowledge from our
sample is on the left side, with estimated question difficulties on the
right, allowing a clear comparison of learner knowledge to question
difficulty levels. Learners in our sample had knowledge ranging
from -1.73 to 2.93 and the distribution had a positive/right skew,
largely because of the 13% of the sample who were pre-CS2.

With the learner knowledge estimates, we have stronger evi-
dence to suggest that Q5, 13, 14, and 18 (noted as problematic in
Table 3) are too difficult. This can clearly be seen in Figure 3 be-
cause these questions are above even the highest knowledge learner.
These questions have an estimated difficulty greater than all 489
learners in the sample. Furthermore, the difficulty parameters of
these questions are > 3, and both knowledge and difficulty are
z-scores on a normal distribution, so we would expect only 0.13% of
the population to have a knowledge level of 3 or greater. So, these
questions should undergo review for revision or removal.

1.0

& Q19 has a steeper curve because its
discrimination is greater. —
The difficulty of a question is
located where the probability of a
“|correct answer is 0.5. |

0.8

0.6

0.4
1

0.2

probability correct answer selected

0.0

T T T é T T
-4 2 0 19 2 4
knowledge/difficulty level
Figure 2: Item characteristic curves for an acceptable ques-
tion (Q19) and four problematic ones in the SCS1. The flat-
ness of the logistic curves for Q5, 13, 15, and 18 reflect the
low/poor discrimination (as reported in Table 3).
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Figure 3: Wright map [10] showing the relationship between
learner knowledge (left, ranging from -1.73 to 2.93, mean:
0.00, med.: -0.17) and question difficulty w/ std. error (right).
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4.5 Responses for removed questions (RQ4)

Three additional questions that may require revision or removal
from the SCS1 are the questions that we dropped prior to running
our analysis due to poor factor loadings (Q20, 24, 27; see Table 1).
While we dropped these questions because their response patterns
deviated from our expectation, factor analysis did not inform us as
to how these response patterns differed.

Analyzing responses to each incorrect option can provide insight
into potential issues relating to test design and learner misconcep-
tions. Each SCS1 question was multiple choice and had 1 correct
option and 4 incorrect options, known as distractors. Ideally, distrac-
tors reflect common misconceptions. But in practice, some options
may not represent a common misconception, resulting in the option
rarely being selected for learners regardless of knowledge level. We
would expect learners of lesser knowledge levels to more frequently
select a distractor instead of the correct answer. If learners with
greater knowledge levels systematically continue to select a distrac-
tor over the correct option, this could suggest confusion relating
to the design of the question or a gap in instruction as learners
consistently exhibit a misconception. So, we expect the frequency
of distractor selection to decrease as knowledge increases.

To better understand how response patterns from dropped ques-
tions deviated, we used the IRT-based Nominal Response Model
(NRM) [7, 8]. Whereas the 2PL model only considered whether a
learner got a question correct or not, the NRM computes the proba-
bility of a learner choosing each of the answer options, taking into
account the question’s difficulty and the learner’s knowledge.

In Figure 4, we plotted the probability of learners with varying
knowledge levels selecting responses for the three dropped SCS1
questions compared to Q19 (a more ideal question). Each line within
a graph represents the probability of a learner selecting a response
option as a function of the their knowledge level, with the highest
line being the answer choice with the highest probability. For exam-
ple, for Q19, option C (the correct answer) was the choice with the
highest probability for learners with knowledge levels around 0.4
or higher; for learners with knowledge levels around —1.4 or lower,
option A was the most probable choice. Q19 displays the expected
relationship for a well-functioning question, where learners with
more knowledge are more likely to choose the correct answer. In
contrast, Q20, 24, and 27 are problematic as they show that learners
with more CS1 knowledge (further to the right) are less likely to
choose the correct answer.

4.6 Expert review of problematic questions

With factor analysis and IRT modeling, we identified specific SCS1
questions that were problematic and may require revision. We said
these questions were problematic because they may assess knowl-
edge that is different from the rest of the SCS1 (based on their low
factor loadings, Table 1) or too difficult (§; too great, Table 3) for
the target population of CS1 learners. The next step would be to
review these flagged questions to understand exactly what about
these questions makes them problematic. One way to do this is
with expert review [1, 8]. To conduct expert review, somebody with
Educational Psychology and domain-specific expertise (about CS1,
in this case) reviews questions that a validation study identified as
potentially problematic. For this paper, the authors conducted the
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Figure 4: Item characteristic plots for NRM model for
dropped questions (Q20, 24, 27) and a good question (Q19)
for contrast. Plots show the relationship between learner
knowledge and responses. Correct responses are circled.

expert review. In this section, we provide a more detailed explana-
tion of our findings relating to 2 questions which we dropped from
the analysis. To maintain the integrity of the SCS1, we were unable
to show any of its questions (see Section 6 to access SCS1).

When reviewing the dropped questions (Q20, Q24, Q27), we first
identified patterns across all 3 questions. The questions assessed
knowledge of function scope (Q20, 27) and recursion (Q24). Prior
work has found that both concepts are challenging for CS1 students
[17, 32]. Furthermore, scope and recursion have more prominent
roles in some programming paradigms than others. For example,
almost all pre-CS2 students in our sample took a CS1 course that
taught programming in R for working with data; within that curricu-
lum, recursion was not taught and scope was only briefly covered.

We focused our expert review on the questions relating to scope.
We looked at the SCS1 to contextualize the patterns in distractor
selection for learners of varying knowledge levels (Figure 4). We
found that for both questions, learners with below average knowl-
edge (< 0) would select a distractor suggesting a misconception on
code tracing; learners with above average knowledge (> 0) would
select the distractor which reflected tracing the code correctly but
lacking knowledge relating to scope. These similarities in response
pattern suggest that these questions may assess similar knowledge
and we may be able to drop one of them or revise one to assess
different misconceptions relating to scope. Furthermore, the poor
factor loading between these questions and the rest of the SCS1
suggest that this knowledge may be somewhat different from other
CS1 concepts, or may not be covered sufficiently in CS1 courses.

Further expert review would involve examining the rest of the
questions flagged as problematic in Table 3. Because of expert blind
spot [22], expert review often includes cognitive interviews with the
target population. Then, we can keep, revise, or remove questions.
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5 DISCUSSION

In this paper, we conducted a validation study of the SCS1 using
IRT to identify differences in question difficulty, discrimination,
and response patterns relative to learner knowledge. From this,
we found that 3 SCS1 questions may assess knowledge that is
different from the rest of the test, and 4 other questions were too
difficult for all 489 students in our sample, and potentially too
difficult for the target population of CS1learners. For the 3 questions
that may assess different knowledge, we looked at which options
were chosen, which further confirmed that the knowledge those
questions measured may have been different. Finally, we conducted
an expert review to better understand differences in learners’ errors.

One way to interpret these results is that they are useful in
identifying potentially problematic questions so we can improve
the SCS1. In the previous section, we provided an example of how
we could do that with expert review of flagged questions. This
revealed that, at least in the populations we studied, scope and
recursion may not have been covered in their prior coursework. It
also revealed opportunity to drop or revise 1 question because it is
redundant. However, it is important to conduct cognitive interviews
with the target population to verify results from expert review.

Another way to interpret these results is that similar results
could have been found through less complex means. Indeed, a
limitation to IRT is the complexity of the analysis and requirements
for a large sample size. But while CTT might have revealed that
the test was hard, IRT revealed how and for whom each question
was difficult. In particular, IRT estimated question difficulty and
learner knowledge separately so that we could better distinguish
whether a question was truly difficult or we happened to have
learners with low knowledge levels. With this, we can better justify
whether a question is appropriate for a given purpose or certain
target population. We found that some items of the SCS1 were too
difficult for the population of CS1 learners. Furthermore, there are
additional IRT techniques that can help identify whether questions
work differently for learners at the same knowledge level but with
different characteristics (e.g. males and females) [21], as well as
methods which can model tests that measure multiple knowledge
constructs [9]. Many aspects of IRT can be useful in future work.

Beyond demonstrating the potential value of IRT, our results have
practical implications for research and teaching. First, as with any
instrument, the SCS1 needs more refinement to improve the validity
of its measurements. Our results suggest that prior work using it
as a pre-test may have risked encountering floor effects because of
the test’s difficulty. At its current level of difficulty, the SCS1 may
be more appropriate only as a post-test. This suggests the need for
additional instruments that help us measure prior knowledge more
reliably, especially as more diverse learners, with more varied prior
knowledge, begin to engage in computing education.
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