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ABSTRACT
Choices learners make when navigating a self-directed online
learning tool can impact the effectiveness of the experience.
But these tools often do not afford learners the agency or
the information to make decisions beneficial to their learn-
ing. We evaluated the effect of varying levels of information
and agency in a self-directed environment designed to teach
programming. We investigated three design alternatives: in-
formed high-agency, informed low-agency, and less informed
high-agency. To investigate the effect of these alternatives on
learning, we conducted a study with 79 novice programmers.
Our results indicated that increased agency and information
may have translated to more motivation, but not improved
learning. Qualitative results suggest this was due to the bur-
den that agency and information placed on decision-making.
We interpret our results in relation to informing the design of
self-directed online tools for learner agency.

Author Keywords
agency; educational technology; interaction design

CCS Concepts
•Human-centered computing→ Interaction design theory,
concepts and paradigms; Empirical studies in HCI; •Social
and professional topics→ Computing education;

INTRODUCTION: DESIGN SPACE FOR AGENCY
Agency, or the sense we are in control of our actions and their
effects [45, 42], is important to learning. Agency can make
students contributors to their learning experience rather than
just products of them [4]. In classroom settings, teachers over-
whelmingly believed that affording students agency improves
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motivation and learning outcomes, while also recognizing that
limits to agency were necessary [23]. This recognition that
both freedom to make choices as well as the scaffolding to
limit these choices suggests that designing to promote effective
learner agency is important, but nuanced.

The need to balance freedom and guidance is especially true
in self-directed learning settings, such as online tutorials and
educational games, where designers create the entire instruc-
tional experience and no human teacher is available to provide
assistance. In these experiences, agency can be framed as a
phenomenon involving both a learner and their learning envi-
ronment, in which the actions that learners desire are among
those they can actually take [67]. The goal of having learners
exert agency is to have learners make informed choices to sup-
port their engagement [8, 56], motivation [17], and learning
[62, 63, 56, 17]. Agency might manifest as a learner deciding
that an exercise is too easy, choosing to jump ahead to a more
difficult exercise, or realizing that they lack some understand-
ing, and reviewing some prior instruction. These decisions
emerge from a learner having a goal, taking an available action
to support their goal, and then reflecting on the result of their
action [44].

Elements of self-directed learning environments will always
influence learner agency, but not always in ways that benefit
learning. To exert agency, learners must first perceive that
they can do so [43, 14]. Learners rely on their perceptions
of the environment to develop their sense of agency [67], so
the design of the learning environment is impactful to their
agency. Designers exert indirect control [59] over learner ac-
tions. These elements of indirect control can inadvertently
result in learners following similar paths for no reason benefi-
cial to learning, therefore unnecessarily limiting their agency.
This was the case in a computer-based math game, where
learners were afforded the agency to play mini-games in any
order but instead tended to follow a dotted line which visually
connected mini-games in a somewhat arbitrary order [26, 48],
resulting in no difference in learning outcomes between high-
and low-agency variations of this game. Therefore, designers
must effectively scaffold a self-directed learning experience to
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ensure learners exert agency by making informed choices that
benefit their learning.

Prior work on agency in self-directed learning environments
has primarily explored the effect of more or less agency on
learning. For example, studies of the self-directed educational
game Crystal Island [56] have found that limiting available
actions in the virtual environment led to better learning gains
when compared to a high-agency condition, but limiting op-
tions also led to an increased propensity for guessing [64, 58].
However, prior work has also found that too much agency
can also be detrimental [2]. This was the case in Chen et
al. 2019, which found that learners with more prior knowl-
edge in a high-agency condition (where they could choose
their own preparation tasks) exhibited similarly unproductive
behavior such as guessing [11]. These findings suggest that
designing for agency means finding a “sweet spot” that brings
the benefits of choice, while preventing learners from being
overwhelmed [62, 19, 14].

While prior work on self-directed learning has explored vary-
ing levels of agency [11, 39, 40, 55] and agency over different
aspects of learning [15, 14, 13], it has not jointly explored vary-
ing levels of information to support agency. And information
is key: there is a difference between giving a learner a choice
about what to do next, and giving them carefully designed
information about the risks and opportunities of those choices.
Prior theoretical work calls this proximal action-related infor-
mation [44], which aims to help learners determine their 1)
capacity to act (e.g. empty check boxes indicating practice
that has not been completed, showing available mini-games
and hiding previously completed ones), 2) current ability to
do so (e.g. skill bars showing estimated knowledge in an open
learner model [28], earned badges to reflect accomplishments),
and 3) the predicted result of taking an action (e.g. an adaptive
recommendation denoting that a specific practice question can
serve as review). This framework suggests how systems might
provide such information, but prior work provides no design
guidance on the effects of varying levels of action-related
information on agency.

To contribute to this design guidance, we built a self-directed
learning environment for learning Python programming, vary-
ing both the amount of agency afforded and the amount
of information provided to support learning decisions. We
specifically studied three design variations: 1) informed (high-
information) high-agency, 2) uninformed (low-information)
high-agency, and 3) informed low-agency. With these alter-
natives, we then conducted a between-subjects experiment to
investigate the effects of these design choices on 1) learners’
experiences, and 2) learning outcomes. Participants in the
study engaged in self-directed learning for a week, then took
a survey and post-test measuring learning gains. In the rest
of this paper, we discuss the design alternatives and our study
design in detail, then present our results and their implications
on designing for agency.

THEORETICAL BACKGROUND ON AGENCY
Before discussing our design alternatives and study design, we
discuss the theoretical views that inform both. In particular,
while there are many definitions of agency, in this paper we

frame it as occurring when a learner can take actions that align
with their learning-related goals [67]. Within this framing,
we position Bandura’s notion of self-efficacy as the primary
individual factor that influences both learning and the use
of proximal action-related information found in a learning
environment [4, 3]. From this view, learners must believe in
their abilities to organize and execute a course of action as
well as process information from the environment regarding
potential actions to take and their implications.

While agency is dependent on self-efficacy, acting upon self-
efficacy requires information from a learning environment. We
specifically draw upon frameworks of proximal action-related
information, which positions information that is situated near
and related to a decision [44] as critical to agency. Examples of
such information include skill bars indicating the current state
of understanding, check boxes indicating what a learner has or
has not completed, or adaptive recommendations suggesting a
next topic to learn.

Finally, we also draw upon the Preference Construction (PC)
model of decision-making to explain the importance of prox-
imal action-related information to agency. This model is
commonly used in explaining economic decision-making and
frames preferences as a contextually developed construct [5,
34]. PC draws upon Herbert Simon’s notion of bounded ra-
tionality, which states that the complexity of a decision task,
limitations of cognitive resources and knowledge of people,
and the tendency to reduce decision effort lead to a limited
rationality [61]. This implies a trade-off between decision-
making effort and the accuracy of the decision outcome [51]
and that because PC is contextual, it is susceptible to different
kinds of biases. Within the context of recommender systems,
influences such as context effects, primary/recency effects,
framing effects, and anchoring effects may bias how people
make decisions [41]. PC states that humans do not have a
clear preference in the very beginning, but rather develop pref-
erences within the context of a decision process. Therefore,
proximal information is critical for exerting agency.

An aspect of agency that is beyond the scope of this paper is
metacognition, one’s ability to monitor and regulate their own
cognitive processes, behavior, and affect [46]. Metacognitive
skills can support agency [47, 44], but vary amongst novice
programmers [38]. We attempted to remove this confound
through random assignment in our study, detailed later in the
paper.

THREE DESIGNS TO EXPLORE AGENCY
Given these theoretical foundations, we considered three vari-
ations on degrees on agency and proximal information: an
Informed, High-Agency (IH) design that gave learners agency
and information; an Informed, Low-Agency (IL) design that
gave learners information but little choice; and Uninformed,
High-Agency (UH), which gave less informed choices. In this
section, we describe the learning domain, how we provided
proximal information, and our three designs.

Learning Domain: Self-directed intro to Python
To explore agency and proximal information, we selected
the domain of learning to program. As a domain, program-
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Figure 1: Features of Codeitz designed to provide learners with proximal action-related information for deciding what to learn
next. Variations of the environment exposed learners to different subsets of the features (see lines at bottom of figure).

ming has many attractive features: at this point in history,
many people want to learn it; there are many examples of
self-directed learning environments for learning to code on-
line; and the domain itself has concepts with relatively clear
inter-dependencies that are amenable to learner modeling.

To support our investigation, we developed Codeitz, a new
self-directed learning environment to teach Python program-
ming (see Fig. 1). All variations of Codeitz shared the same
introductory curriculum adapted from the materials defined in
[70]. This curriculum was designed to assume no prior pro-
gramming knowledge and cover introductory Python concepts
including basic constructs (data types, operators, variables,
print statements, conditionals) and templates demonstrating
ways to use what was learned (variable swap, float comparison,
find min/max, digit processing).

While the original learning materials were created for more
linear learning, we relaxed this constraint to make learning
through exploration more feasible. Following semantic de-
pendencies defined by the Python programming language and
extending that pattern of hard dependencies to templates [70],
we developed a concept hierarchy that learners could use to de-
cide what to learn next (shown in Fig. 2 and described below).
To adapt the learning materials to match the concept hierar-
chy we defined, we adjusted instructional content to assume
learners only visited parent concepts and created additional
exercises to practice which relied on fewer other concepts. We
kept some examples and exercises which relied on concept
dependencies not reflected in our hierarchy, so this adaptation
was not complete.

From an instructional design perspective, we designed Codeitz
to be a self-contained learning environment. To learn a con-
cept, learners could read instruction to develop conceptual
understanding of an aspect of Python and then attempt prac-
tice exercises where they received feedback related to correct-
ness from the system. Practice exercises included multiple
choice, short answer, filling in Memory Tables [71] to trace
program state, and writing code. To support a formative expe-
rience, learners were able to retry practice exercises and see
the answer whenever they wanted. Each page of instruction or
exercise mapped to exactly one concept.

Three Codeitz Designs Varying Agency, Information
All three variations of Codeitz had the same instructional ma-
terial and included conventional feedback on learning progress
(Fig. 1b) and exercise correctness (Fig. 1c) common to online
learning tools such as online courses (e.g. edX, Coursera) and
learning platforms (e.g. Khan Academy, Codecademy). How-
ever, the designs varied in the amount of agency and predictive
information afforded to learners.

We specifically focused on supporting learners’ decision of
what to learn next by varying the presence or absence of three
features that either afforded agency or offered proximal in-
formation to support learning decisions. One feature was a
world view showing Python concepts and their dependencies
(Figures 1a, 2). We designed the world view to be as nonlinear
as possible so as to encourage learners to exert agency and
explore different concepts while having an understanding of
their underlying relationships. Learners could use the world
view to explore concepts as they relate to other concepts they
may have already learned. Another feature was recommen-
dations of what to learn next (Fig. 1d). These were based
on the estimated difficulty of the exercise relative to learners’
current levels of understanding for a concept. Recommenda-
tions supported the goals of reviewing (exercise involves a
concept learner is knowledgeable with), continuing (exercise
involves concept learner has made progress with), or challeng-
ing (exercise involves a concept a learner has little experience
with). Learners can use recommendations to judge how certain
exercises may support current goals. And finally, skill bars
provided estimated levels of mastery for a concept (Fig. 1e),
to help learners determine if they needed to complete all of
the instruction and exercises or whether they could move on to
another concept. Learners can use skill bars to judge how well
they have mastered a specific skill. Our three designs offered
unique combinations of these three features.

UH: The uninformed high-agency version lacked recommen-

dations & skill bars, but still required learners to exert agency.
We intended for this version to reflect an open online course
(e.g. a MOOC) in the information provided to a learner as
well as its availability of content. In this design, learners were
uninformed of system predictions from their prior responses.
They used information about the knowledge domain, progress
they made, and exercise feedback (Fig. 1a-c) to guide their



Figure 2: The world view, showing Python concepts taught
and major dependencies between them.

Informed high-agency (IH) sidebar → 

Uninformed high-agency (UH) sidebar ↑

Figure 3: Sidebars for the uninformed high-agency (UH) and
informed high-agency (IH) variations of Codeitz. The UH
version (left) only shows what instruction and exercises a
learner has completed (using check marks and stars). The
IH version (right) includes skill bars (dotted ovals) to denote
estimated mastery and blue goal-oriented recommendations
for next exercises to consider (dotted rectangles).

learning experiences. They would select a concept from the
world view (Fig. 2), then use the sidebar as shown on the
left of Figure 3 to look at what instruction and exercises they
had/ had not completed. With this information, learners using
the UH version of Codeitz had the freedom to explore any
instructional material in any concept.

IH: The informed high-agency version provided recommenda-

tions and skill bars while requiring learners to exert agency.
Recommendations highlighted specific concepts in the world
view and certain exercises in the side bar. The right side of
Figure 3 shows the sidebar for the IH version with skill bars
to show estimated mastery of a concept and recommendations
to show recommended exercises which may support different
goals (e.g. review, challenge). We intended for the IH version
of Codeitz to reflect a recommender system where learners
could follow recommendations but could also choose to devi-
ate from them at no penalty. Figure 4 shows the interactions
of the IH condition.

IL: The informed low-agency version provided recommenda-

tion and skill bars, but limited choices to a single next recom-

mendation or prior exercises.
We intended for the IL version of Codeitz to reflect a Com-
puterized Adaptive Test (CAT) [9, 10] or basic Intelligent
Tutoring System (ITS) [68] where the system decided the next
exercise for learners. So rather than being free to choose a
concept and then an exercise as high-agency conditions did,
learners using the IL version clicked a “next” button and the
system selected the concept of the top recommended exercise.
From there, they could choose to 1) do the exercise, 2) read
related instruction, or 3) review any prior concepts. Only after
they attempted the exercise would they be provided with a new
one.

Adaptivity with Bayesian Knowledge Tracing (BKT)
To estimate learners’ knowledge and recommend/select ex-
ercises for IH and IL designs, we implemented a modified
version of the Bayesian Knowledge Tracing (BKT) algorithm
[16]. BKT is a Hidden Markov Model that has the key as-
sumption that learners can undergo a one-way transition from
the unlearned to learned state for each concept, after which
there is a change in the probability they will get an exercise
correct [52, 30, 33]. While BKT typically assumes items to be
equal, we used the Knowledge Tracing Item Difficulty Effect
Model (KT-IDEM, [49]) to encode exercise difficulty.

Our model had two parameters at the concept level and two at
the exercise level. The concept-level parameters were P(L0),
the probability a learner already knew a concept before at-
tempting an exercise, and P(T ), the probability of a learner
transitioning from an unlearned to learned state after an ex-
ercise attempt. The exercise-level parameters are P(Sm), the
probability of a learner who had learned a concept slipping
and getting an exercise m wrong, and P(Gm), the probability
of a learner who had not learned a concept guessing and get-
ting m correct. A more difficult exercise would have a higher
slip probability and a lower guess probability. We fitted these
model parameters using expert review [36] based on ≈15 re-
sponses and exercise properties (e.g. closed or open form,
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Figure 4: Two primary views of Codeitz for informed high-agency (IH) condition. A: The learner followed a the recommendations
and selected the Relational Operators concept and is able to view the instruction and exercises for that concept in the sidebar. B:
After clicking on the recommended exercise (Can you read relational operators?), the learner is then taken to the exercise view
where they can attempt the exercise as practice. In the uninformed high-agency (UH) condition, there are no blue recommendations.
In the informed low-agency (IL) condition, there is no world view (A) and learners must instead follow system recommendations.

perceived difficulty of exercises), and knowledge domain; all
parameters ranged from 0.01 to 0.25.

Put together, we used this modified version of BKT to es-
timate the probability of getting an exercise correct. The
estimated probability a learner will get a given exercise m cor-
rect at the n-th attempt is P(correctn|Mn = m) = P(Ln)(1−
P(Sm))+ (1−P(Ln)(P(Gm)), or the sum of the probability
of getting the exercise correct in the learned and unlearned
states. We used this to incrementally update the probability a
learner was in the learned state after the n-th opportunity as
follows: P(Ln|correctn,m) = P(Ln)(1−P(Sm))/P(correctn,m).
We used this probability of being in a learned state as an esti-
mate of a learner’s understanding of that concept.

To select exercises, we used the BKT-Sequence Algorithm
[18] which orders exercises based on a minimum difference
between predicted difficulty and desired difficulty based on
current learner understanding. After each exercise attempt, the
probability a concept is learned (P(Ln)) was updated. We then
updated the sequence of recommended exercises:

1. Calculate MinScore and MaxScore, the minimum and max-
imum P(correctm) for all incomplete exercises.

2. For all incomplete exercises, calculate WantedScorem =
(MaxScore−MinScore) · (1−P(Ln)) where n is the con-
cept corresponding to each exercise.

3. Calculate di f fm =WantedScorem−P(correctm).

4. Order exercises in ascending order by |di f fm|.
We then selected the top two exercises, as well as the top two
exercises from current, parent, or child concepts.

STUDY: AGENCY ON EXPERIENCES, LEARNING
To understand the effects of varying information and agency
afforded in our three versions of Codeitz on engagement and
learning, we conduct a between-subjects study with 79 novice

programmers. We sought to be ecologically consistent with
discretionary use tools to support novice programmers learning
in formal learning environments (e.g. an online practice tool
used by students in an introductory CS course).

The study included novice programmers who were primarily
university and community college students near an industri-
alized urban center of the United States. We recruited partic-
ipants through flyers placed throughout a university and sur-
rounding area, pitches to computing-related courses, and posts
to closed social media groups. Our inclusion criteria speci-
fied participants had to be at least 18 years old, never learned
or used Python, completed at most one non-Python program-
ming course prior (although 9 participants violated this criteria:
UH:2, IH:5, IL:2), have access to a computer with internet,
and be fluent in English. Participants’ self-reported ethnicities
were Asian (52%), Caucasian (27%), Hispanic/Latinx (9%),
mixed race (6%), and Black/African (3%), with 4% choos-
ing not to disclose. Genders of participants were men (51%),
women (44%), and non-binary (1%), with 4% not disclosing.
Most (84%) reported working towards one of 40+ different
degrees (roughly, physical sciences: 23% of all participants,
computer science & informatics: 19%, engineering: 16%, hu-
manities, arts, social sciences: 10%, business & finance: 8%,
math: 1%, undeclared: 3%).

Participation in the study began with participants creating an
online acount and then getting randomly assigned to one of
three conditions. They then completed a pre-survey which
asked questions relating to programming self-efficacy (as mea-
sured by a programming self-efficacy survey [53]), mindset
[20], and motivation for participating in the study. They then
used Codeitz across the span of a week and then when they felt
ready, took a post-survey and post-test. We compensated par-
ticipants with a $50 gift card upon completion of an exercise
in most concepts and the post-survey.



The post-survey asked learners about their experience using
Codeitz (which also served as a distractor task [24]), then
administered the hour-long post-test, then measured their pro-
gramming self-efficacy again, then mindset, and finally asked
about demographic information. Demographic information
was not asked until the end to avoid stereotype threat [60].
The post-test measured learning outcomes for basic Python
knowledge taught in Codeitz, adapting questions from [69, 50,
12].

For questions relating to learner experience, we focused on
how learners decided what to learn next and how important
different features of Codeitz were in their decision.

We used the following questions to analyze experiences:

1. After you were done with a lesson or exercise in Codeitz,
how did you decide what to do next? (open response).

2. Think back to when you finished an exercise. How impor-
tant were the following parts of Codeitz in deciding what to
do next? (Likert-type, shown in Fig. 5).

3. Were there other parts of Codeitz that you considered when
deciding what to do next? If so, please describe them and
how important they were. (open).

4. If you remember seeing the blue recommendation text (pic-
tured below), how did you use it to decide what to do next?
(open).

5. What about using Codeitz caused you to feel frustrated, if
anything? (open).

6. What about using Codeitz was helpful to you, if anything?
(open).

RESULTS: EXPERIENCES, LEARNING
To answer our research question of the effect of varying levels
of agency and information to support agency on engagement
and learning outcomes, we analyzed two aspects: 1) learners’
experience in the three designs and 2) the outcomes of these
experiences on learning.

Experiences varied by condition, performance
To analyze learners’ experiences, we took two perspectives,
first analyzing post-survey responses and log data on the use
and perception of Codeitz features, and then analyzing learn-
ers’ experiences between the three design alternatives.

Use and Perception of Agency Information
Figure 5 shows participants’ ratings of the importance of de-
sign features in Codeitz across conditions (as described in Fig.
1). They rated these features on a five point Likert-type scale
from “Not at all important” to “Extremely important.” This
scale also had a sixth “Not applicable” (N/A) option because
some features were not present in some versions of Codeitz.

Qualitative and Likert-type survey responses suggested that
the features available in all three conditions were generally
viewed as valuable to learning. Participants in all conditions
found the progress indicators (check marks and stars) denot-
ing instruction and exercise completion to be helpful: of the 79

Table 1: Data by condition. Sample size (n) includes number
of low (↓) and high (↑) performers on post-test. Histograms
of post-test score (max: 39.5), number of Codeitz exercises
attempted (max: 44), and number completed (max: 43) shown
with median (x̃) and interquartile range (iqr) (approx. to his-
togram bin).

cond. n test score # attempted # completed

IH 25
↓: 7. ↑:9 x̃:23.5; iqr:12 x̃:43; iqr:1 x̃: 43; iqr: 3

IL 31
↓:12. ↑:12 x̃:21.8; iqr:17 x̃:29; iqr:34 x̃:29; iqr:34

UH 23
↓: 7. ↑:5 x̃:23.0; iqr:14 x̃:43; iqr:0 x̃:43; iqr:2.5

Figure 5: Importance of different features of Codeitz by condi-
tion. Not all features were present in each version of Codeitz
(see Fig. 1).



participants across all conditions, 89% found the progress in-
dicators at least moderately helpful and 68% found them very
or extremely helpful (see second row of Fig. 5). Few, however,
reported how they used them. Despite exercise feedback in
Codeitz consisting only of binary correctness feedback for
at least 85% of exercises, participants still found the feed-
back valuable (third row Figure 5). But participants across
all conditions tended to want more intermediate feedback on
their exercises to help them persevere after getting incorrect
exercise attempts, something that less than 15% of exercises
had. P68 in the UH condition reflected this tendency to want
intermediate feedback: “hints and better feedback when you
get an answer incorrect... would help me feel more confident
about completing the task.”

IH and UH participants who had the world view reported it
as important to guiding their learning: 22 of 23 UH partici-
pants and 11 of 25 IH participants reported using the world
view to decide what to learn next. Most participants in both
high-agency conditions (UH: 65%, IH: 52%) reported finding
the world view very or extremely important. Many valued
the world view for how it explicitly revealed dependencies (“I
like seeing the connection between concepts in the world view.
That was very helpful to see how concepts fit together.”, P18,
UH). Others noted that “hidden dependencies” between con-
cepts caused confusion (e.g., “the practice in the [Condition-
als] has questions that need you to actually read Arithmetic
Operators first before you can solve it... I need[ed] to go back
to the other concepts before solving the exercise”, P1, IH).

Participants viewed the information provided only to the in-
formed conditions (BKT-based recommendations and skill
bars) as less valuable. Only 53% of the 56 (IH & IL) partici-
pants who saw them found recommendations at least moder-
ately important to deciding what to learn next (Fig. 5). A com-
mon complaint was that recommendations tended to “jump
around” (P72, IL) or “jump too far” (P51, IH), suggesting that
recommendation behavior was unpredictable. One reason may
be because of cold-start in which the recommender system ini-
tially had no information about a new user and therefore was
more prone to making poor recommendations [35]. Recom-
mendations did seem to improve as participants used Codeitz
more and the system collected more data (e.g., “...at first I
would just click on any blue exercise without realizing they
could require applying concepts that were entirely unfamiliar
(this lead to some frustration), but eventually after solely using
the [next] button to proceed I would only encounter exercises
after I was sure I could complete them.”, P74, IL).

Compared to recommendations, participants found skill bars
as more valuable, with 63% of participants reporting them to
be least moderately important. An IH high-performer reported
using skill bars to determine what to learn next: “I considered
when the green skill bars would become ’advanced’ which
helped me know whether or not I should move on to the next
topic.” (P45, IH). Still, some participants were skeptical of
the skill bar ratings: “The skills levels, ‘novice, expert, etc’
varied depending on which section I was completing. For
example, Even though the end section showed my reading skill
as ‘expert’, if I clicked back to the initial section it showed it

as a ‘novice’. This made progress tracking feel a little empty,
as it appeared to be simply used as visual feedback, not actual
tracking” (P55, IL). This unexpected behavior was because
estimates of knowledge were localized to specific concepts
and had no relationship to other concepts, even if those other
concepts were dependencies (elaborated on later).

Learning Experiences by Condition and Outcomes
To understand how learners’ experiences varied by conditions,
we analyzed open-ended responses within each condition and
compared the responses of participants who scored in the top
1/3 (high performers, > 28.25/39.5) and bottom 1/3 (low per-
formers, < 18.5) on the post-test across all study participants;
following the contrasting groups method of psychometrics
[36, 37]. We conducted an open coding and thematic analysis
[1] of post-survey responses from these contrasting groups,
seeking to understand how they used features of Codeitz to
decide what to learn next and what factors may help explain
their performance on the post-test. We used log data (e.g.
number of exercises attempted) to triangulate our findings.

Participants in the Uninformed High-Agency (UH) condi-
tion (N=23) tried to define their own learning trajectory to
varying success. Without recommendations or skill bars, UH
participants had to decide what to learn next using the world
view showing them the concept hierarchy, progress indicators
showing them what instructions and exercises they’ve com-
pleted (check marks for read instructions, stars for correct
exercises), and exercise correctness feedback. Almost all (22)
of the 23 UH participants explicitly mentioned using the world
view to decide “I looked at the flowchart and picked a connect-
ing branch.” (P57). Overall, participants in the UH condition
tended to attempt all the exercises, with 78% attempting all
the exercises and 65% getting them all correct (all participants
were allowed unlimited retries).

High performers in the UH condition all reported exerting
agency. While the UH condition did not have recommen-
dations or skill bars to inform learners, some of the 5 high-
performers in this condition noted still being able to deviate
from the world view’s explicit paths in ways that benefited
their learning. For example, 2 high-performers noted trying
exercises and then reviewing lessons if they were unfamiliar
with the exercise. Another skipped to trying exercises first but
jumped back to reading lessons when necessary: “I mostly
skipped around to the exercises, if I felt like I could understand
what was going on in the lesson, and then moved back through
the lesson if I couldn’t do an exercise.” (P5). The remaining
3 high-performers reported finding Codeitz the structure and
presentation of the curriculum helpful, the design of the cur-
riculum as intuitive: “The lessons were easy to understand
and exercises helped cement the knowledge” (P21).

In contrast to UH high performers, the 7 UH low performers
noted struggling to navigate their learning experience. For
example, P39 was frustrated because there was “no proper
path” and P63 felt “the order [of concepts] did not seem
intuitive.” P18, who reported minimal programming self-
efficacy prior to the study, noted how his confidence affected
what he chose to learn next: “To decide which lesson I would
try next from a lower level, particularly the second level, I



looked at which concept I felt most confident taking on first.
(P18). Low-performing UH participants also noted wanting
additional instructional content, such as “video explanation”
(P3) and more feedback in code writing exercises (P9).

Participants in the Informed High-Agency (IH) condition
(N=25) reported similar experiences to the UH condition, with
additional comments about the recommendations and skill
bars. To decide what to learn next, 11 of the 25 IH partici-
pants reported using the world view, 10 reported following the
recommendations, and 2 reported trying the recommendations
but then abandoning them. So whereas almost all UH partici-
pants reported following the world view, less than half of the
IH participants reported doing so, with 28% reporting at least
trying to follow the recommendations. Overall, participants in
the IH condition also tended to attempt all the exercises, with
64% attempting all the exercises and 56% of IH participants
getting them all the correct.

IH high performers reported evolving interpretations of the
recommendations as they deviated from the world view’s pre-
scribed paths. Three of the 9 high-performing IH participants
reported using the recommendations; of those 3, 2 of them
reporting trying the recommendations at first, but then aban-
doning them because they led them to exercises that were too
advanced: “At first, I looked at the blue highlighted boxes.
However, I felt like it made me jump too far. For example,
one lesson had started talking about if statements but I hadn’t
learned the syntax for those yet. So then I just followed the tree
from top down, left to right.” (P25). Three high-performing
IH participants ignored the recommendations because they
wanted to complete all of the curriculum. P1 noted how he
ignored the recommendation but how he could see its benefit
for less motivated learners: “I did not really pay attention to
the blue recommendation because I was motivated to do all
the lessons and the practices to receive maximum knowledge.
I think this blue recommendation might be useful for people
who have low motivation to do more exercises.” Log data con-
firmed tendency to do all exercises, as all high-performing IH
participants completed at least 40/43 of the exercises (93%),
although this complete coverage of exercises was consistent
across the entire IH condition.

In contrast to the high-performing IH participants, the 7 low-
performing IH participants tended to ignore or misinterpret
the recommendations and followed a perceived intended path.
Three participants ignored the recommendations, such as P24
who “usually just did the problem even though it was review.”
Another participant was confused by the recommendations
updating: “... sometimes [a recommendation] would be there
and sometimes it would not. Typically I would see this after
I finished in exercise.” (P38). Of the two participants who
reported using the recommendations, P43 reported that he “did
what [the recommendation] said” while P23 used the recom-
mendation to estimate how much time an exercise would take:
“While having limited free time, it was helpful to see a note
indicating that the next tab was a review exercise, meaning
it would likely be quick to complete.” (P23). Three low per-
forming IH participants struggled with having to choose their
own trajectory. P38 reflected this in her description of how

she got lost and found choosing what to learn next frustrating:
“I found the layout of what lessons to take were confusing. I
went from top to bottom and left to right, however, during the
exercises I would find myself lost on multiple occasions. This
would be due to either skipping sections but having to use it
before I learned the material. Instead of having the choice of
choosing what lesson to take next, it would have been more
helpful if it was just given (P38).

Participants in the third and final Informed Low-Agency (IL)
condition (N=25) only had three choices at any given time:
completing the given exercise, reviewing instruction related to
the exercise, or reviewing prior lessons and exercises. Three
participants found this lack of overview made it challenging
to keep track of how much they had completed, how much
remained, and how the concepts related to each other. P72
reported his challenges of keeping track of where he was in
his learning process: ”Everything seemed to jump around
and it was hard to keep track of what I was on or what I
was supposed to do next.” (P72). Overall, participants in
the IL condition tended to attempt fewer exercises than the
high-agency conditions: whereas both high-agency conditions
had most (78% for UH, 64% for IH) participants attempt all
43 exercises, only 41% of participants in the IL condition
attempted all the exercises. All 41% of those participants did
get all exercises correct, though.

The 12 high-performing IL participants varied in how they
interpreted the next exercise presented to them. Half (6) re-
ported viewing recommendations as indicators of an exercise
or a required next step: When I saw this blue recommenda-
tion, I would make sure to click it in order to complete it as it
seemed to mean ‘required’ (P42). Three others reported using
the recommendation text as informative in deciding whether to
attempt an exercise, read instruction, or go back to a previous
exercise: I only used it to see how difficult the exercise was. I
would still go straight to the exercise even it told me I hadn’t
learned about the concept, and I will come back to it later if I
didn’t figure it out. If it told me it’s something I had already
learned, I wouldn’t leave the exercise until I figured it out.
(P35). The remaining 3 reported not using recommendations
(1) or did not comment on their usage (2). Multiple partic-
ipants reported a desire to have an overview of all concepts
and explore concepts more freely: “I didn’t know how many
topic there are in total and could only view them after doing
the previous topic and unlocking it. I feel it would be better if
I can see how much I am completing and how much still has
to be done” (P75).

In contrast to the high-performing IL participants, the 12 low-
performing IL participants reported relying much less on the
recommendations. Three reported not even seeing or noticing
the recommendations. Of the 4 low-performing IL partici-
pants that mentioned using recommendations, two saw them
as indicators of “a signal that the selected block [was] an
exercise” (P61). One participant “used [the recommendation]
as an indicator for a concept practice/challenge” and that “the
practice challenges were very helpful... in learning python”
(P61). Low-performing IL participants also completed fewer
exercises: Only 25% (4) of these participants attempted more



Table 2: Coefficients of linear regression to model learning
outcomes (post-test scores). *** indicates p < 0.001, * that
p < 0.05, & . that p < 0.10.

coefficient estimate (std. err.) t Pr(>|t|)
(Intercept) 14.41 (2.72) 5.301 0.000 ***
condition: IL 0.70 (2.58) 0.270 0.787
condition: IH 0.90 (2.74) 0.328 0.744
self-efficacy (pre) 2.43 (1.02) 2.387 0.020 *
taken CS course 4.62 (2.52) 1.836 0.070 .

Table 3: ANOVA results and effect sizes for linear regression
of post-test scores. ε denotes a small positive value (0.001−
0.004). * indicates that p < 0.05.

variable (df) SE F Pr(>F) η2 [95% C.I.]
condition (2) 45 0.3 0.776 0.006 [0, 0.08]
self-eff, pre (1) 499 5.7 0.020 * 0.066 [ε , 0.21]
taken CS course (1) 583 6.7 0.012 * 0.077 [ε , 0.23]
residuals (74) 6483

than half of the exercises; in contrast, 81% (9 of 11) high-
performing IL participants completed more than half of the
exercises.

Learning & Exercise Completion by Condition

Condition, Self-efficacy, & Prior Knowledge on Post-Test
To understand how the varying designs of Codeitz conditions
affected learning, we used a linear regression to model post-
test scores. In addition to passing into the regression the con-
dition participants were in (UH, IH, IL), we also considered
self-efficacy prior to using Codeitz (range: 1-7) and whether
a participant reported taking a prior CS/programming course
(true/false), as both self-efficacy and prior knowledge are im-
portant to learning [22]. We found no violations of linear
regression assumptions: normality (Shapiro-Wilk, p=0.23),
homoscedacity (spread-location plot), and linearity [6, 29, 54].
Table 2 shows the coefficients of the linear regression.

Table 3 shows the results of a linear regression model anal-
ysis of variance (ANOVA). The ANOVA indicated a statisti-
cally significant effect on post-test scores of prior self-efficacy
(F(1,74) = 5.7, p < 0.05). Whether a participant had previ-
ously taken a programming course was also had a statistically
significant effect (F(1,74) = 6.7, p < 0.05). Both significant
factors had medium effect sizes (η2 > 0.06) with large con-
fidence intervals which did not include zero. The condition
participants were in did not have a statistically significant
effect (F(2,74) = 0.3,n.s.).

We conducted non-parametric post-hoc analyses to understand
how prior self-efficacy and programming course experience
affected post-test score. The median post-test score of partici-
pants who had taken a prior programming course was 29.12
(IQR = 13.4) and of participants who had not was 21.50 (IQR
= 15.3). This difference was statistically significant according
to a Mann-Whitney U test (U = 364.5, p = 0.012 < 0.05).
We interpreted the medium Vargha and Delaney A effect size

to state that there is 69.1% chance a post-test score for a ran-
dom participant who has taken a programming course will
be greater than a score for a random participant who has not
[65]. For self-efficacy, we calculated Kendall’s non-parametric
rank correlation [31]. We found a significant correlation
(τ = 0.25, p = 0.0014 < 0.01) between prior programming
self-efficacy and post-test score. We convert τ to r = 0.38
[66, 32] and identified a medium effect size between prior
self-efficacy and post-test score [54].

Number of Exercises Completed by Condition
To check for a difference in the number of exercises com-
pleted by condition, we conducted a Kruskal-Wallis test [54].
We decided on this non-parametric test because the data was
not normal (Shaprio-Wilks: p < 0.05). Table 1 shows the
distribution, median, and IQR for the number of completed
questions by condition. We found statistically significant dif-
ferences in number of completed exercises between conditions
(χ2(2,N = 79) = 11.33, p = 0.003 < 0.01.

We conducted a pairwise post-hoc analysis with Mann-
Whitney U tests with Holm correction. We found that a sta-
tistically significant difference between the IL condition and
the other two conditions (Mann-Whitney U for IL/UH: U =
504, p = 0.014 < 0.05; IL/IH: U = 225, p = 0.014 < 0.05).
We can interpret the medium Vargha and Delaney A effect
sizes to say that there is a 71% chance that a random UH
participant completed more Codeitz exercises than a random
IL participant, and that there is a 71% a random IH participant
completed more exercises than a random IL participant.

DISCUSSION: INTERPRETATIONS & IMPLICATIONS
The objective of this study was to jointly understand how af-
fording and informing agency affected engagement and learn-
ing outcomes. We did so by designing three variations of
a self-directed online learning environment that varied the
amount of agency or information afforded to participants as
they learned introductory Python.

We found that the specific features offered in these three con-
ditions led to very different learning experiences and degrees
of engagement, but that these differing experiences led to no
detectable effect on learning outcomes. We also found that
low-agency (IL) participants completed significantly fewer
exercises than high-agency (IH, IL) ones.

There are multiple ways to interpret these findings related to
learner experience and learning outcomes. One interpretation
is that our recommendations were not “intelligent” enough to
be helpful. Our BKT implementation faced challenges such as
parameter tuning [27] and cold-start [35], as consistent with
most statistical models. While we did our best to fit param-
eters according to best practices and given the response data
we had available, we also recognized that better parameters
could improve the performance of BKT. But Codeitz is repre-
sentative of a discretionary use self-directed online learning
environment in that recommendations and item selection will
never be perfect or optimal for all learners, especially early on
before we have a large corpus of response data. So understand-
ing how to design information such as adaptive recommenda-
tions to affect agency and learning also requires understanding



how learners interpret and use information that come with
the inevitable imperfections and inaccuracies of data-driven
adaptation. And despite many participants feeling like the
recommendations “jumped around” and were not always ac-
curate, participants in both high and low agency conditions
still found ways to use them to inform their decision-making
process and learning. So while our BKT model had identified
problems, participants could still use information from it. And
participants’ experiences and reports can help better inform
how we design adaptive online environments that promote
learner agency.

Another interpretation is that other confounds made our post-
test an invalid or unreliable measure of learning. Because
we wanted to investigate the design of self-directed online
learning, we set up our study such that it could emulate this
discretionary, informal learning. We did so by having partici-
pants learn on their own time across the span of a week and
then take the post-test whenever they felt ready. While this
experimental design introduced confounds including variation
in amount of time spent learning and an uncontrolled test-
taking environment, they were externally valid to many online
learning environments (e.g. MOOCs, online coding platforms,
remote/hybrid courses). Such confounds were also distributed
across the conditions. Furthermore, post-test items came from
concept inventories [50] or were piloted with representative
users with think-aloud [21].

Design Considerations and Future Work
A third interpretation of our findings is that designing for
agency is nuanced and requires careful design considerations
we are only beginning to understand. While prior work inves-
tigated varying agency to measure its effect on learning, we
designed and varied the information and agency afforded to
learners. Our results suggest possible explanations and design
considerations to explore in future work:

The value of agency may be dependent on the structure of
knowledge to learn. Relating to programming, this study used
learning materials with concepts that have rigid hierarchical
relationships. This knowledge domain may lend itself to more
linear instructional content. Agency to support learning here
may be in the form of jumping ahead for a challenge or back
for review. In contrast, learning to use programming for ex-
pression (e.g. with Scratch) may lend itself more to non-linear
instruction. Agency in this case may be in the form or explo-
ration of one of many paths. Therefore, how to afford agency
may be dependent on the structure of the knowledge domains
and learning objectives.

Agency may be valuable to more than just learning outcomes.
Our findings suggest that agency may support motivation to
continue learning. Prior work has generally found more agency
relating to increased motivation (e.g. [57, 17, 56, 47, 25]).
Our findings suggest that there was a 71% chance a random
high-agency participant completed more exercises than a low-
agency one. This suggested that affording learners the agency
to see everything there was to learn (with the World View) and
choose for themselves may have had a motivational benefit to
help learners continue to engage.

Recommendations may have different roles to different learn-
ers. In Codeitz, we intended for the recommendations (Fig.
1d) to be cues to exert agency. While learners in the informed
high-agency condition tried to use the recommendations to
guide them, many treated the recommendations not as cues
as to what to expect from a given exercise, but simply as in-
dicators of an incomplete exercise. It may be important to
consider not only the intended role of cues to inform agency,
but also to consider alternatives ways learners may interpret
them initially as well as after some interactions.

Consider learners’ prior experiences with related tools. Just
as learners come with prior perceptions related to what they
are learning, they also come with prior perceptions related
to how to interact with learning environments. While we
designed Codeitz to not have an apparent order in high-agency
conditions, we found that a majority of participants (in the UH
condition especially) reported following or trying to follow
an intended order. Such behavior might prevent any potential
benefits from exercising agency from materializing.

Overviews, while valuable, may indirectly constrain learn-
ers’ decisions. Learners found value in Codeitz’s world view,
suggesting it provided an integrated view of concepts to be
learned. But the overview might have also acted as an indirect
control [59], limiting agency. Designs may need to consider
the unintended side effects of offering conceptual overviews
on how learners choose to sequence their learning.

Our evidence, and these possible interpretations, suggest that
designing for agency, and in particular, designing informa-
tion that encourages agency, is far from straightforward. Just
as offering choice is not consistently beneficial to learners,
offering information to support those choices is not consis-
tently beneficial either. Future work should explore with more
granularity the interaction between self-directed learning en-
vironments, learners’ interpretation of what the environment
provides, and learning outcomes. And designers should be
wary about the benefits of learner agency, and pay close at-
tention to the specific domain of learning and the specific
unintended side effects of how learners use the affordances in
a self-directed learning environment.
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