
Towards validity for a formative assessment for
language-specific program tracing skills
Greg L. Nelson

University of Washington

Paul G. Allen School of Computer Science & Engineering

Seattle, Washington

glnelson@uw.edu

Andrew Hu, Benjamin Xie, Amy J. Ko

University of Washington

The Information School, DUB Group

Seattle, Washington

andrewhu@uw.edu,bxie@uw.edu,ajko@uw.edu

ABSTRACT
Formative assessments can have positive effects on learning, but

few exist for computing, even for basic skills such as program trac-

ing. Instead, teachers often rely on overly broad test questions that

lack the diagnostic granularity needed to measure early learning.

We followed Kane’s framework for assessment validity to design

a formative assessment of JavaScript program tracing, developing

“an argument for effectiveness for a specific use.” This included: 1) a

fine-grained scoring model to guide practice, 2) item design to test

parts of our fine-grained model with low confound-caused variance,

3) a covering test design that samples from a space of items and cov-

ers the scoring model, and 4) a feasibility argument for effectiveness

for formative use (can target and improve learning). We contribute

a distillation of Kane’s framework situated for computing educa-

tion, and a novel application of Kane’s framework to formative

assessment of program tracing, focusing on scoring, generalization,

and use. Our application also contributes a novel way of modeling

possible conceptions of a programming language’s semantics by

modeling prevalent compositions of control flow and data flow

graphs and the paths through them, a process for generating test

items, and principles for minimizing item confounds.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
Assessment, program tracing, validation, validity, item generation

1 INTRODUCTION
Formative assessments can help improve learning when they pro-

vide actionable information for better targeted instruction, practice,

and feedback [10, 23]. Decades of evidence show formative feedback

has one of the best effect sizes for learning interventions, according

to a review of 500 meta-analyses [16] and another similar review

[17]. Within computing education, validated formative assessments

may help in learning foundational skills, such as program tracing,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Koli Calling ’19, November 21–24, 2019, Koli, Finland
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7715-7/19/11.

https://doi.org/10.1145/3364510.3364525

program writing, problem-solving, and other computing skills [55].

Students in computing also prefer formative assessment, looking

for “assessment as guidance and opportunity to learn” [43].

Computing education research (CER) has strong initial work

creating assessments with validity evidence for measurement of a

construct, such as self-efficacy [6] or CS1 knowledge [51], but the

opportunity to design or evaluate assessments for validity specif-

ically for formative use remains unexplored. Decker and McGill

catalogued instruments used or published between 2012-2016 by

searching online and reviewing the table of contents for ICER and

the CSE and TOCE journals. They found 13 instruments for knowl-

edge of computing or computer science, 3 for CS1, 1 for CS2, 6

for computational thinking, and 3 for advanced skills; and 31 non-

knowledge instruments that “...measured constructs such as self-

efficacy, anxiety, confidence, enjoyment, sense of belonging, intent

to persist, and perceptions” [8]. Margulieux et al. reviewed measure-

ment practices in CER papers reporting qualitative and quantitative

human-subjects studies from 2013-2017 and found 16 standard-

ized computing-specific measurements used. None of these present

arguments for validity for formative use of these measures.

While summative and formative assessments can have similar

items, formative assessments must bemuchmore carefully designed

to diagnose what learners do and do not know. For example, a

formative assessment that asked learners to write programs might

fail to precisely identify what learners do and do not know about

prerequisite skills, such as a programming language’s syntax and

semantics [55]. And in fact, prior work shows many course exams

and even validated assessments of programming knowledge have

items that require 10-20 concepts to answer correctly, even for basic

skills like program tracing [27, 28, 38, 51]. This lack of granularity

can result in learners successfully learning several aspects of a

programming language’s semantics, but then getting a zero on an

exam because they do not understand a single operator (as occurred

with modulus operators in [22]). Moreover, if such assessments

produce low scores that do not reflect learning progress, a learner

might feel confused, demotivated, and even come to believe they

lack sufficient ability in programming to continue studying it.

To better design and evaluate formative assessments, we need a

validity framework that accounts for specific uses of a test’s score.

Widely accepted approaches to validity, however, tend to overlook

how a test’s score will be used, instead focusing more narrowly

on statistical properties of a test such as accuracy and reliability

[19, 32]. For example, in making and doing validity studies for the

FCS1 test, Tew et al. describe how they created items to cover CS1

concepts, and did item-response theory analysis and think-aloud

studies to identify items with variance caused by confounds (such

https://doi.org/10.1145/3364510.3364525

Koli Calling ’19, November 21–24, 2019, Koli, Finland Nelson, Hu, Xie, and Ko

as poor quality distractors or difficult to understand questions)

[12]. While this traditional approach to validity helps verify that a

test measures what it intends to measure, it does not necessarily

verify that the measure itself is meaningful or helpful in the world

- for example, how using the measure affects a variety of learning

outcomes over time.

To address this problem in this paper, we will use Kane’s frame-

work for validity to design a formative assessment for program

tracing skills. The educational measurements research community

increasingly uses Kane’s validity framework, which focuses on eval-

uating a validity argument for the effectiveness of an assessment for

a specific use (such as formative assessment) [20]. As a measure of

adoption, Kane’s work has over 900 citations in just 5 years. Kane’s

framework suggests formative assessments also need a fine-grained
scoring model useful for guiding remedial instruction and practice;

granular items that test small parts of the scoring model; and an

argument for why a test is valid for formative use, describing how
the assessment can target weak skills to improve learning, ideally

without indirectly harming other outcomes like self-efficacy.

While prior work on CS assessments achieve some of these goals,

most lack key elements from Kane’s framework. For example, ex-

isting assessments [2, 35, 48, 49, 52, 58] lack a fine-grained scoring
model, because their single numeric score output is difficult or im-

possible to map to specific feedback (e.g., when a learner gets 7 of

27 questions correct on the SCS1 [35], it is unclear what they need

to learn to improve). Concept inventories try to identify known

misconceptions [1, 41, 50] and benchmark exams have been used to

evaluate granular educational outcomes [26, 29, 46, 47], but none of

these present arguments or evidence for using them for diagnostic

feedback intended for learners. Some prior work has proposed item

designs [9, 24, 25] or identified issues with existing item designs

[28, 54], but without evaluating these items for formative use. Sev-

eral have studied item difficulty and item measurement characteris-

tics for program writing [27, 46, 47, 57], but few have qualitatively

studied the response process to see how learners answer the items

and what reasoning they actually use (e.g. [12, 22]). Some assess-

ments offer more granular scoring models [14, 15, 44, 57], but only

occasionally offer small evaluations of item characteristics [11, 27].

Some work lists example questions to assess the neo-Piagetian de-

velopmental stage of a person’s tracing skills, without a validity

argument for formative use of those questions [25]. Finally, while

some adaptive learning [13] and tutoring systems [4] give feedback

based on performance and may improve learning, none have tried

to validate how well the models of knowledge internal to these

systems measure knowledge or skills for computing.

To address these gaps, this paper contributes two things: 1) a dis-

tillation of Kane’s framework, situated in the domain of computing,

and 2) a novel application of Kane’s framework to the design of

formative assessment of program tracing knowledge. As we demon-

strate how to apply Kane to a formative tracing assessment, we

describe a model of program tracing skills (Section 3.1), then con-

tribute a fine-grained scoring model for part of it (Section 3.2), the

design of granular items to precisely observe tracing skills (Section

3.3), a test design that samples from a space of possible items (Sec-

tion 3.4), and a feasibility argument for formative use of our test

(Section 3.5). These contributions provide an exemplar for our com-

munity’s continued and critical work on CS assessments, building

upon advances in educational measurement.

2 KANE’S FRAMEWORK FOR ASSESSMENT
VALIDITY

To help us design an assessment for formative use, in this section

we describe Kane’s framework for validity. Within our description,

we will contribute a demonstration of how the framework can help

us better understand the strengths and weaknesses of computing

assessments, with respect to some particular use.

Prior validity studies for assessments in CER have partly but not

fully embraced the depth of validity frameworks from educational

measurement. In practice, studies have defined validity as a form

of statistical checklist: if one performs a set of experiments and

observes particular statistical properties, then the test is “valid.”

These conceptions of validity are not necessarily wrong, they are

just narrow, overlooking factors that improve our ability to evaluate

and design assessments. The educational assessment and measure-

ment community have recently embraced validity frameworks that

account for broader factors such as how a test will be used and what

consequences it might have to learners [19, 32], such as Messick

[31] and Kane [20], each with over 900 citations.

Kane, which we will distill and situate in computing education in

this section, defines validity as the quality of a four-part argument
about the assessment and the assessment’s effectiveness for a spe-

cific use. An argument is a network of claims, evidence, and as-

sumptions. To illustrate argument quality, suppose a test used in

college admissions is biased against particular groups, and using

the test changes the distribution of admitted students in an un-

fair/unequitable way, which is ethically undesirable. Thus, even

if that test might have desirable psychometric properties in the

aggregate, the test may still have a low quality argument–and thus

low validity–for use in admissions. Now, if someone added to the

argument, noting that, after evaluating ten different assessments for

admissions, this test had the lowest bias, and the test is better than

alternatives (even not using any assessment), then we might say it

has a stronger argument–and thus stronger validity–for admissions.

In the rest of this section, we detail the four parts of a validity

argument in Kane’s framework, providing examples of how they

apply in the domain of computing.We then interpret the implication

of Kane’s framework for the specific use of formative assessment.

2.1 Validity arguments address scoring,
generalization, extrapolation, and use

Kane’s validity framework breaks down a validity argument into

four parts, starting from 1) scoring: how items are scored, to 2)

generalizing from the scoring model to expected performance on

test tasks, to 3) extrapolating scores from test tasks to other tasks

in other contexts (including construct claims, e.g. measuring CS1

knowledge), to finally 4) use: using the scoring model for some

decision and evaluating the broader effects of this use. The main

benefit of this breakdown is avoiding applying evidence for one

part (e.g. extrapolation) as evidence for another (e.g. use), as each

requires different evidence. Kane also recognizes validity arguments

take many published studies to develop incrementally (as we will

note in the evidence for the tracing assessment we present later).

Towards validated formative assessment for program tracing Koli Calling ’19, November 21–24, 2019, Koli, Finland

To explain these four parts, imagine a CS1 midterm we have

designed for formative assessment, offering learners granular, di-

agnostic feedback about what skills they have and have not yet

mastered. For practical purposes we can’t include every possible

item, so we take some sample of them we hope is representative.

We make the test, administer it to students, have TAs score it, give

solutions back with grades and solutions to the problems, noting

how well they have mastered each concept. We hope this improves

learning in the class, and might use the assessment iteratively.

2.1.1 Scoring. The scoring argument has claims about the
procedure for translating observed performance on the test
to the scoring model for a student. This argument should in-

clude a description of how test performance is observed (such as

learners’ handwritten markings on an exam printout) and then

translated into a scoring model (such as points for each question,

sub-scores for tracing and writing parts, and an overall score). For

the CS1 midterm example, the scoring argument might include

claims like “The TAs use our grading rubrics and don’t see the

test-taker’s name, so their scoring procedure lacks bias” and “The

tracing questions have objective, unambiguous answers so we can

score them without bias.”

To provide evidence for scoring claims, Kane describes several

sources of evidence, from analytical arguments to empirical studies.

Arguments may justify how the structure of items matches the

scoring model; for example in our CS1 midterm, the tracing score is

the total of the score of each tracing item. To further strengthen the

argument, a panel of experts might review scoring procedures for

each item and check implementation correctness (e.g. the correct

answers are the actual correct answers for each item). For human-

rated questions, empirical studies might assess inter-rater reliability,

including analysis of sources of bias.

By considering an assessment’s scoring argument, we can better

understand an assessment’s strengths and weaknesses, and per-

haps improve them. Decker’s CS1 assessment includes program

writing items graded by humans, so Decker makes claims for inter-

rater reliability by sharing the explicit objective and subjective

scoring rubrics for individual writing questions, using triage theory

to justify partial credit rubrics [7]. According to Kane, to further

strengthen this claim, one might study multiple graders grading

the same person’s assessment for a sample of TAs with varying

experience. This might lead to improvements in the rubrics.

2.1.2 Generalization. Even with an unbiased scoring process, an

assessment may have other flaws, such as poor test-retest reliability.

Test-retest reliability refers to the variation in scores when we give

the same person our CS1 midterm, then have them do the same

or similar test again (e.g., last year’s midterm). Some variation

seems inevitable, but too much variation might signal flaws in the

generalizability of the test. If we knew where this variation comes

from, we might improve the test or use it more appropriately.

Kane’s framework breaks down test-retest reliability into several

different sources of variation. The test’s items are just one sample

from a space of possible test items and item designs; for example,

our CS1 midterm might have hard writing questions that do not

represent our CS1 learning objectives well. The testing context

includes how the test is administered; for example, time limits,

room size and noise, giving the test in a class for credit vs. extra-

credit or other compensation. A testing occasion is a particular

instance of giving the test, and includes other factors that vary with

time; for example, a test-taker’s knowledge, mood, tiredness, etc.

According to Kane, a generalization argument should in-
clude claims about these sources of variation, and broadly
includes claims about how the scoring model relates to ex-
pected performance on possible test tasks (not real-world
tasks). This argument should define the items on the test and the

test design, and define the space of test tasks; for example, for

our CS1 midterm we might include the types of tracing questions,

what constructs they use, and the types of writing questions. This

argument may also describe or quantify the sources of variation

in scores; for example, sampling variation in scores that comes

from aspects of items on the test, including item design, genera-

tion and selection processes. This argument may also qualify the

testing context, such as testing conditions like time-limits, time of

administration, or other factors the assessment designers consider

important for lowering score variation.

To provide evidence for generalization claims, Kane describes

several sources, from analytical arguments about the process for

choosing test items, to stronger empirical studies of test-retest

reliability. The main source of empirical evidence is measuring

test-retest reliability (ideally including a parallel test form with a

different sample of items). Additional studies should target poten-

tially large sources of variation in depth; for example, varying the

amount of time learners have between test and re-test, or varying

testing conditions. Theoretical and analytical arguments should fo-

cus on the item selection process, such as having experts review the

space of items, item designs, test design, and chosen items. Argu-

ments should also focus on how the test and test conditions mitigate

the strongest potential sources of variation. For example, for large

(and hard to define) domains like CS1 test questions, the relatively

small sample of items on the test may lead to large variation.

Prior work on CS assessments have contributed some evidence of

generalization, but have many opportunities for improvement. For

example, in the FCS1 [12] and replicated SCS1 [34], potentially high

sources of variation are the use of pseudocode and the selection

of items from the very broad space of possible CS1 tasks. The

FCS1 empirical test-retest reliability evaluation focused on using

pseudocode vs. familiar language, finding a .572 correlation between

the two. Kane’s framework suggests this could be strengthened

by generating a parallel form with different items and measuring

test-retest reliability; this was partly done in a validity study not

specifically designed to estimate the sources of variation. Parker

et al. created the SCS1 with many new items then measured test-

retest reliability with the FCS1 [34]. They found a correlation of

.566, about the same as the FCS1 testing and retesting with the

pseudocode and language-specific FCS1 versions with the same

questions. This means sampling variation from item selection may

be similar to language transfer variation in score. Kane’s framework

also suggests broad domains like CS1 tasks may be hard to sample

from (as the test’s sample of items is small compared to the broad

space); thus, additional more specific tests may also be useful.

2.1.3 Extrapolation. Even if a test has strong arguments for its

scoring model and generalization, the scores themselves may not

Koli Calling ’19, November 21–24, 2019, Koli, Finland Nelson, Hu, Xie, and Ko

predict real-world task performance, i.e. scores may not extrapo-
late to other tasks in non-test contexts. Real-world contexts differ

in many ways, including motivation, incentives, tools, task dura-

tion, and access to resources like the internet and other people.

Beyond context, the nature of test tasks may lead to a different

problem-solving process than real tasks; for example, the process of

answering multiple choice questions about program writing differs

from writing software in a team setting.

According to Kane, to make an extrapolation argument,
one must 1) describe which real-world tasks and contexts
and 2) show how real-world task performance is similar to
test-task performance. Task descriptions range from broad (e.g

“computing”, “writing code”) to more specific (e.g. “writing sorting

algorithms”, “creating database schemas”). The most specific de-

scriptions describe the process of doing the task; for example, the

steps and conditions needed to complete each step, with examples.

To describe task contexts, one describes conditions on the environ-

ment, such as places (in an organization, in a class), social situations

(alone, with others, with access to StackOverflow), and available re-

sources (having test suites, having an IDE). One must also describe

the limits of extrapolation; for example, a software engineering

test might extrapolate to front-end software development but not

embedded systems development.

To show how real-world task performance is similar to test-task

performance, Kane talks about analytical and empirical evidence.

Analytical arguments describe key factors shared between real-

world and test task performance; they may also describe similarities

between the processes of real and test tasks. Empirical evidence

of processes comes from observation and think-aloud studies of

real and test tasks. Empirical studies may directly associate scores

and a comparable metric on real tasks; this may involve comparing

the test with a more expensive measure of real-world performance

(such as a panel of expert software developers reviewing a more

real-world writing task).

To put this in practice in computing, we should think about

strengthening extrapolation claims for writing assessment tasks

to more real-world writing tasks. The FCS1 used multiple choice

questions (MCQs) to measure writing skills, and also made a valid-

ity argument analytically by mapping FCS1 tasks to CS1 content

areas, with experts reviewing their mapping for representativeness

[12]. Using MCQs to measure writing likely limits extrapolation

due to process differences, compared to writing in a real-world IDE

with internet access. Instead of MCQs, Decker’s CS1 assessment

had learners write code on paper, using a rubric for grading [7];

that better supports an extrapolation argument because of simi-

larity between tasks. Kane suggests directly comparing test scores

and a comparable metric on more real tasks. While some studies

compare incidentally when using multiple instruments, purpose-

fully designed studies will have higher quality; for example, a study

correlated the FCS1 and a single 90-110 minute writing task with

an IDE [53]. Beyond this, Kane’s framework suggests we could

further strengthen writing assessments by comparing them with

real-world writing in software development in different contexts.

2.1.4 Use. Kane argues that even when a test predicts real-world

or test task performance, this does not imply we can use the test

for any arbitrary purpose effectively. For example, if we wanted

to evaluate two designs that teach a sub-part of CS1 knowledge,

using a broad CS1 assessment may not be sensitive enough to

detect differences. Similarly, while our hypothetical CS1 formative

midterm might be great at identifying learners’ brittle knowledge

about programming language, it might be quite poor at measuring

the programming knowledge of TAs you might hire for a class, as it

may not discriminate well between learners who have all excelled

at a course’s learning objectives.

For Kane, the argument for a specific use includes 1) how
the scoring model is used to support decisions, and 2) in-
tended and unintended effects of the decision and giving the
test. First, the argument should describe the decision procedure

for how the score is used; for example, a learner may take the next

class in a sequence if their final exam score > 70%. The argument

should include the inputs and outputs and people involved. For

example, an assessment may be used by researchers as input to

calculate, report, and interpret some statistic based on it, such as an

effect size; the decision procedure includes the particular statistical

estimation procedures, and documentation written by assessment

designers to guide appropriate statistical use and interpretation.

The argument should also include the context of the decision; for

example, using the assessment in K-8 classrooms.

Second, the argument should consider the intended and unin-

tended effects of the decision. The argument should evaluate in-

tended effects; for example, for formative use, the intended effects

are improving learning for particular skills. The argument should

also evaluate unintended effects of giving the test and using it; for

example, if our CS1 midterm hurts some learners self-efficacy so

they drop the class or give less effort, it may not be helpful overall

for improving learning. The argument should include costs, unin-

tended effects, and how negative unintended effects are mitigated;

for example, mitigating harm to self-efficacy. The argument should

include systemic effects; for example, a standardized computing

test may lead to teaching to the test instead of teaching for real-

world tasks. Beyond evaluating intended, unintended, and systemic

effects in isolation, the argument should compare alternatives; for

example, in our earlier argument for using a biased test for college

admissions, that test had the lowest bias of the options and was

better than using no test at all.

To provide evidence for use claims, Kane describes several sources,

from analytical arguments about expected effects to direct empirical

evaluation of effects and a cost-benefit analysis. Analytical argu-

ments should estimate effects using properties of the test design,

scores, and the decision procedure; these properties come from ear-

lier scoring, generalization, and extrapolation claims. For example,

one might argue, “The software design test scores poorly predicts

success but somewhat predicts failure in real-world software de-

sign tasks. Using the test to recommend training to new hires with

low scores has small downsides and larger upsides: if they don’t

need training, they can opt-out of it, and if they opt-in and need it

they may get large benefits.” The most direct evidence for use is to

use the assessment in practice and empirically assess the effects as

part of a cost-benefit analysis. For example, to claim a formative

assessment helps in a class, it should be comparatively evaluated

in that context, as other alternatives like going to office hours or

seeking human help may already address that material sufficiently

for the control group. Pragmatically, smaller initial studies in lab

Towards validated formative assessment for program tracing Koli Calling ’19, November 21–24, 2019, Koli, Finland

settings may be required to overcome cost, logistical, and political

barriers to larger studies.

By considering an argument for a specific use of an assessment,

we can better understand an assessment’s strengths andweaknesses,

and perhaps improve them. For example, the SCS1 has been used as

a pre and post test to compare learning interventions [33], yet Kane

points out that validity argument for the score’s interpretation as

indicating CS1 knowledge “... does not, in itself, validate [any] score

use.” While the SCS1 has excellent validity studies for our field, such

as internal reliability measures, it lacks SCS1 test-retest reliability

studies to strengthen an empirical argument specifically for pre-

post use. This could be strengthened by doing an instructional

sensitivity study that attempts to carefully examine the test’s ability

to detect changes in knowledge caused by direct instruction [40].

2.1.5 Summary. Obviously, a summary of Kane’s extensive validity

framework cannot fully capture the nuances of Kane’s positions on

validity and prior conceptions of validity. For more detail, see [3]

for an applied summary, [20, 32] for depth, and [21] for discussion.

3 A PROGRAM TRACING ASSESSMENT FOR
FORMATIVE USE

In the previous section we showed how Kane’s framework for a

validity argument can help researchers better design assessments

by considering their strengths and weaknesses for a specific use. In

this section we will use Kane’s framework as we carefully design

our assessment and provide theory-based validity arguments as

design rationale. We’ll discuss five aspects of our assessment design:

our model of how tracing is performed in non-test contexts, how

we model test performance with a fine-grained scoring model, how

we design granular items suitable for scoring, how we compose

those items into a test, and how we score the test and use scores

for formative use.

3.1 Tracing Performance Model
Within Kane’s framework [20], a key requirement for developing

a validity argument for a formative assessment is a “model of the

target domain.” For program tracing, that means having a theory of

what causes both novice and skilled tracing performance in contexts

outside test tasks. Such a model helps us design an assessment, but

also understand limitations of our design and how to evaluate it.

Our model of the target domain of program tracing builds upon

prior work [33], which proposes that program tracing performance

by any learner is ultimately caused by some set of beliefs about

how specific programming language (PL) constructs execute (in PL

terms, beliefs about their semantics). For example, learners skilled

in program tracing likely have beliefs that closely mirror a PL’s

actual semantics; for simple if statements without an else branch,
this would mean having the ability to precisely follow such a con-

ditional’s two execution paths (the true and false branches through

and around the then block). Less skilled behavior may have differ-

ent beliefs about semantics, which may lead learners to execute a

conditional differently (and incorrectly), such as always executing
the then block, independent of the condition.

Beyond beliefs about a PL, we also argue that tracing perfor-

mance is mediated by other skills, using prior work. For example,

perception matters because if a learner misperceives an operator

(e.g., > instead of <), they may trace incorrectly, even if they know

the correct semantics. Similarly, strategic skills matter: many stud-

ies document how learners sketch and mark paper questions to

keep track of values during tracing [5]; teaching strategies for dis-

tributing cognition in this way helps people avoid errors [56]. As

Schulte’s BlockModel describes, some learners may use higher level

program comprehension strategies, like detecting idioms or infer-

ring semantics from variable names and context, to avoid tracing

code [45]. Finally, learners may simply guess in a test setting.

Of course, the brief summary above does not fully describe the

rich complexity of program tracing skills. It does, however, illustrate

the challenge of accurately measuring tracing ability at a level of

granularity sufficient for guiding learning. It also illustrates the

kind of domain nuances necessary for strong validity argument.

3.2 Scoring Model
As Section 2.1.1 and 2.1.4 discussed, Kane’s framework suggests

we need a fine-grained scoring model for formative use. Achieving

this requires requires some simplification of the complexities in

the domain of tracing. Here we describe the simplifications we

made to model tracing skills while retaining granularity needed for

targeting weak skills with remedial instruction and practice. This

constitutes the foundation of our scoring argument.

First, accounting for all factors in Section 3.1 would require a very

sophisticated and complex assessment that covers both program-

ming language (PL) semantics knowledge, strategic knowledge, and

many other factors. In this exploratory work, we will simplify this

by focusing on PL semantics knowledge, by not explicitly modeling

tracing strategy, code perception skills, meta-cognition, or other

response processes (like guessing). We will partly address these

simplifications in our item and test design in later sections.

Given our decision to only model PL semantics knowledge, we

next need to decide how to model this knowledge; our choices here

require a more extended justification and discussion. Novice under-

standing of a PL’s semantics may not align completely with a PL’s

actual semantics. Novices can have brittle models of a particular lan-

guage construct’s execution, but they can also believe that language

constructs have dependencies that the PL actually does not have

(e.g., assuming assignments to local variables change aliased global

variables). If our scoring model cannot represent these varying

conceptions of semantics, we will not be able to guide the specific

feedback needed to refine these conceptions.

To model varying conceptions of semantics, we begin with the

observation that if a learner was entirely free of misconceptions,

their PL semantics knowledge could be precisely modeled as what

semantics they can and cannot accurately mentally simulate. This

might be true for people who have mastered a programming lan-

guage, but is certainly not true for everyone else: prior work has

identified misconceptions including imagined interactions between

the semantics of different constructs [36, 37]. For example, a novice

may understand paths involved in a function that calls another

function, but trace incorrectly when a function calls itself, even

though the PL’s semantics makes no distinction of such cases. Thus,

we cannot model that conception if our scoring model only tries to

model knowledge of individual language construct semantics.

A much more fine-grained scoring model for tracing skills is to

model a learner’s ability to accurately trace every possible concrete

Koli Calling ’19, November 21–24, 2019, Koli, Finland Nelson, Hu, Xie, and Ko

if(x<0) {
 x=x+1;
}

exit

if(x<0)

entry

x=x+1

a b c

?

if(?)

?

??

true

false

truefalse

d

?

if(?)

?

truefalse

?

if(?)

?

??

truefalse

Figure 1: At label (a) a concrete program, then (b) its control
flow graph (CFG), with specific conditions and assignments.
At (c) a semantic CFG, (d) a composite semantic CFG, with ?
placeholders.

program that a PL could express. Obviously, this highly granular

approach is infeasible, as the space of possible programs is infinite.

Instead, we propose a middle ground, which attempts to achieve

sufficient granularity by modeling prevalent compositions of individ-
ual PL constructs, and modeling learners’ ability to correctly trace

all possible executions of those compositions. For example, rather

than just modeling knowledge of conditionals in isolation, we will

model knowledge of conditionals nested inside of conditionals (and

all their possible execution paths), or conditionals inside of loops

(and all their possible executions paths). For example, if(...){
if(...){...} } has three possible execution paths: the first if
executes but not the second if, both execute, or neither executes.

To explain this more precisely, we will use two representations

of program execution from program analysis. We will represent PL

construct semantics as control flow graphs (CFGs) to capture the

possible executions of an individual construct, and data flow graphs
(DFGs) to capture dependencies between uses and definitions of

variables. A CFG represents potential executions through AST; for

example, the program in Figure 1a has the CFG shown in Figure

1b. However, rather than just using CFGs to represent concrete

programs, we use them here to represent the abstract semantics of

a PL construct. For example, Figure 1c shows the semantic CFGs
(SemCFG) for any arbitrary conditional, one of which is the concrete
CFG in Figure 1b, with placeholders (represented by ?) for whatever

code, if any, might execute for the then and else branches. All of

the (two) paths through such SemCFGs represent all of the valid

semantics a learner could know about conditionals.

With these concepts alone, all we can represent are individual

PL constructs. Returning to our idea of representing compositions

of pairs of semantics, we can create permutations of SemCFGs to

represent prevalent compositions that learners might misunder-

stand. These permutations fill one or more of the the unspecified

? subgraphs with other SemCFGs. For example, Figure 1d shows

a composite SemCFG that represents a nested conditional with no

outer else branch. All of the (three) paths through this composite

SemCFG represent all of the valid semantics a learner could know

about nested conditionals.

By defining a collection of composite SemCFGs to detect many

possible misconceptions of a PL’s semantics , we can build a scoring

model that covers all possible paths through all of the SemCFGs we

choose to include in our test, giving a 1 or 0 for each path that a

x = 2;
define f(x){
 x = 7;
}
f(3);
x = x + 1;

a b

varset

if(?)

varset

truefalse

varset

if(?)

varset

varset

truefalse

varset

x = 1;
y = 2;
if(x < 5) {
 x = x + 1;
 if(y > 2) {
 y = y + 3;
 }
 x = x + 5;
}
x = x + 7;

c d

call

varset

varset

return

varset-inner-
shadowed

declare

argset-
shadowed

Figure 2: (a) An example item (item 28) and (b) the Sem-
CFG path it attempts to assess. (c) A code example with (d)
SemCFG with data flow varset-inner-shadowed.

learner can or cannot mentally simulate correctly. We will define a

notation for these SemCFG paths as nested lists of SemCFG paths,

since interpreter execution paths are just node-edge combinations

in the graph. For example, for the nested SemCFGs in Figure 1d,

the three paths in our notation would be: 1) if-true{if-false}, 2) if-
true{if-true}, and 3) if-false. Our proposed scoring model has a 0 or

a 1 for each of those paths. We define correctness as executing a

complete valid path for each node in the SemCFG.

To account for data flow semantics, we further extend this model

by adding a limited set of data flow path elements, which are data

flow patterns representing variable assignments and references.

These can be included in the unspecified subgraphs of SemCFGs

(the ?’s in Figure 1c & 1d) to helpmodel interactions between control

flow and program state. To express data flow, we will also include in

our SemCFG path notation the scope that was accessed; for example,

varset-local represents setting a value in local scope, varset-global a
value in global scope, and likewise for varget-local and varget-global.
To express more complicated data flow, we encode which scopes

were available for a variable resolution, for example varset-local-
shadowed for when a local variable was set but it also shadowed

a global variable (this represents the nodes available for data flow

at that point) (see Figure 2c for code whose SemCFG has a varset-

local-shadowed and later Figure 3). While these do not represent

all data flow scenarios in a PL, we focus on important cases for

common PL semantics where novice learners might benefit from

formative feedback if they got it wrong (as that is our intended use,

per Kane’s framework).

Combining all of these concepts, our theoretical scoring model

represents whether a learner can accurately trace each path through

a set of SemCFGs that we believe can detect many possible mis-

conceptions of PL semantics, at a fine-grained level of detail. This

granularity is critical to identifying specific misconceptions of both

individual PL constructs and compositions of PL constructions.

3.3 Item Design
The scoring model in the previous section represents what skills

we wish to test. To actually observe these skills and score them, we

need items. Kane’s framework says we should argue how our item

structure matches our scoring model. Therefore, here we extend our

scoring argument by discussing how to design items compatible

with our scoring model that minimize confounding factors not

Towards validated formative assessment for program tracing Koli Calling ’19, November 21–24, 2019, Koli, Finland

accounted for in our scoring model. Figure 3 shows an example

item at right.

For the program part of our item design, most of our items

followed the program structure in Figure 2a. Figure 2a shows an ex-

ample of code that assesses the true-then-false path (if-true{if-false})
of a nested conditional (represented by the SemCFG in Figure 2b).

The program’s x and y variables serve three roles. First, their values
ensure a particular control flow path is followed; for example in

Figure 2a, x=1 ensures the first if(x<5) is true, and the y value of

2 ensures the if(y>2) is not true, which makes the code follow

if-true{if-false} instead of if-true{if-true}. Second, the variables are
the basis of the two prompts for each item; for example, “x is ...” and
“y is ...” in Figure 3. Third, by modifying one or both variables before

and after each branch in the program, the item ensures that every

unique control flow path the learner might follow while mentally

simulating the program (correct or incorrect) would result in dif-

ferent values for x and y, enabling unambiguous interpretations of

the item response. This item design helps ensure that if the learner

knows the values in the variables at the end of execution, we can

infer they know all the semantics required to compute those values.

To generate most items for the types of SemCFG paths we de-

fined in our scoring model, we followed a program template that

supported at most two PL constructs (e.g., a single conditional, a

conditional inside of a loop, a function call inside of a loop, etc.):

varset path { varset path { varset } varset } varset
where each varsetwas the assignment of x and/or y and each path
represented the branch of a control structure (e.g. if-true, while-
false). The brackets {}’s represent potential nesting. For example,

in the nested conditional example in Figure 2a, we instantiated

the template as update-x update-y if-true { update-x
if-false { update-y } update-x } update-x. We then trans-

lated these instantiated templates into the program like the one

above, using inequality expressions to ensure the desired branch,

and assignments to ensure non-overlapping values of x and y for
all possible incorrect executions of the program (for example, see

Figure 2a).

The template above did not work for all of the semantics we

wanted to assess (e.g., local and global variables, shadowed variables,

function calls and returns), but we generated similar templates for

such programs that similarly mitigated confounds. For example,

our function call and return items used global variables to isolate

knowledge of scoping, function arguments, and return values, such

as the item in Figure 3.

While the item design above avoids some confounds, it also

introduces some. In particular, it introduces concrete program ele-

ments such as literal values, operators, and expressions that may

result in slips and guesses, which confound our interpretation of

item responses (these terms come from models used in educational

assessment). Slips occur when some aspect of an item causes a

learner’s answer to be incorrect, even when the learner can trace

the item (for example, misreading an operator, or overlooking a

return statement). Guesses occur when we infer incorrectly that the

learner knows when they do not (for example, making an arithmetic

error that inadvertently led to a correct answer).

To mitigate the influence of confounds that cause slips and

guesses, we developed the following principles for what program

literals and operators to choose to fill in our item templates:

Execute the code and enter what values are in the variables when the program finishes. Fill
in the answer boxes on this page (at the bottom) - you should copy the values from your
memory table sheet.

var x = 3;
var y = 6;
function f(x) {
 x = 7;
 return 2;
}
y = f(5);
x = x + 1;

Your Answers:
x is _________________

y is _________________

Figure 3: Item 21 on our tracing assessment, with tracing
scaffolding tables on right and answer spaces on bottom.

3.3.1 Arithmetic. For any arithmetic, we preferred small numbers

and simple operations to maximize the likelihood people know the

operation and minimize working memory errors. While arithmetic

errors might indicate some misunderstanding when assessing the

+ operator, arithmetic errors confound measuring more advanced

constructs. We also avoided negative numbers, as they likely lead

to more arithmetic mistakes.

3.3.2 Perception. Tracing requires accurately perceiving syntax

(e.g., not mistaking x for y). To address this, we ensured that small

errors in variable look up still led to correct performance for condi-

tionals. For example, in the program x=4, y=3, if(x<5){ }, the
control flow will always do the inner body of the if, even if the

learner accidentally looks up y.

3.3.3 Idioms. Some patterns in programs are so common, they

allow learners to “short circuit” program tracing. To avoid this, we

avoided idioms when possible.

3.3.4 Metacognition. Learners can guess or slip based on cues in

an item. For example, variable names like counter can give clues

to behavior (or be distractors that may cause a slip); or a learner

may doubt their answer if no variables change. To avoid this, we

used single-letter variable names, and for larger nested items we

ensured one or more variables modified from their initial value.

3.3.5 Guessing. To motivate honest responses, we explained in

the test that guessing makes it harder to infer what learners know.

3.4 Test Design
Given our scoring model and item design, we now discuss our pro-

posed test design for a practical subset of JavaScript semantics and

a practical set of compositions of JavaScript language constructs.

Koli Calling ’19, November 21–24, 2019, Koli, Finland Nelson, Hu, Xie, and Ko

As discussed in Section 2.1.2, Kane’s framework says we should

describe our sample of items, and describe ways to lower score

variation to improve generalization (and potentially mitigate un-

intended effects like harming self-efficacy). The argument below

therefore constitutes our generalization argument.Wewill not make

an extrapolation argument, although we describe steps for one in

our discussion section.

Table 1 lists all of the items in our test, corresponding to a set of

SemCFGs. The test covers variable assignments, arithmetic opera-

tors, inequalities, conditionals, loops, and functions, and prevalent

compositions of these constructs. We generated all items using the

procedures and guidelines described in Section 3.3.

In addition to these items, our test attempts to remove additional

confounds by teaching a tracing strategy and scaffolding tracing

on each item. We teach the tracing strategy described in [56], using

a written script for proctoring the test and not giving personalized

feedback on mistakes learners were making. The script instructs

the proctor to show an example of the strategy by writing it in pen,

then having the learner try the same example, for three examples.

To support a tracing strategy during the test, the items include

memory tables [56] on each page to scaffold notional machine state

recall and representation (see right of Figure 3, previous page). We

put them next to each problem to make them at-hand, to reduce

visual working memory effort in going back and forth between

where they were in the code and making changes to the memory

table. We also provide extra table sheets.

To mitigate confounds of the test format:

• The test has no time limit, reducing time-management con-

founds; this may also improve fairness for people with cog-

nitive differences and perceptual differences like low-vision.

• The test is typeset using a larger mono-spaced font, balanc-

ing the trade-off of making character recognition easier and

distance needed to move perception to keep track of location

and moving between the code and the memory tables.

• To mitigate confounding effects of self-efficacy, we order

items from least to most difficult, to avoid initial shock and

dismay; the test cover page also states “Whatever you know

right now about programming, you can learn more with

more practice. Your performance on these questions has NO

RELATIONSHIP with your ability to learn programming.”

and “The purpose of this assessment is to help you focus your

learning on parts you are less strong with at the moment.

Please give your best effort, work carefully, and use the

explicit tracing strategy we will show you on the next page.”

Given our item design for resisting guesses and slips and our

mitigation strategies, we believe it analytically plausible that our

scores will generalize within the scope of items on the test, but

future work needs to empirically evaluate this. We do not present

an argument our test scores extrapolate, but will describe steps for

one in our discussion section.

3.5 Scoring and formative use of our
assessment

As Section 2.1.4 discussed, Kane’s framework says we also need

an argument for formative use, describing how the assessment can

target weak skills to improve learning, ideally without indirectly

Item template and added SemCFG information

1 x=c1>c2 booleanExpressionFalse
2 x=c1>c2 booleanExpressionTrue
3 x=c1; x=c2

4 x=c1; y=x-c2

5 x=c1; y=x+c2

6 x=c1; y=c2; y=x-y

7 x=c1; y=x; y=c2

8 x=c1; y=c2; if(x>c3) { y = y -c4} if-false-no-else
9 x=c1; y=c2; if(x<c3) { y = y +c4} if-true-no-else
10 x=c1; y=c2; if(x>c3) { y = y +c4} else { x=y+c5} if-true-has-else
11 x=c1; y=c2; if(x>c3) { y = y +c4} else { x=y+c5} if-false-has-else
12 x=c1; y=c2; if(x>c3) { y = y -c4} x = x +c4 if-false
13 x=c1; y=c2; if(x<c3) { y = y +c4} x = x +c5 if-true
14 x=c1; y=c2; while(x>c3) {x=x-c4}

while-true while-true while-false

15 x=c1; y=c2; while(x>c3) {x=x-c4} while-true while-false
16 x=c1; y=c2; while(x<c3) {x=x-c4} while-false
17 x=c1; y=c2; while(x>c3) {x=x-c4} y = y+c4 while-false
18 x=c1; y=c2; while(x>c3) {x=x+c4} y = y+c4

while-true while-true while-false

19 x=c1; y=c2; f(z){return z+c3} y=f(c3)
20 x=c1; y=c2; f() {x=c3} y=x+c4; f();

21 x=c1; y=c2; f(x){x=c3; return c4}; y=f(c5}; x=x+c6

22 x=c1; y=c2; f(x){x=y}; y=y+c3; f(c4}; y=y+c5
23 x=c1; y=c2; f(z){y=z} f(c3); x=x+c4
24 x=c1; y=c2; f(x){x=x+c3; return g()}; g(){return x}; y=f(c4);

x=x+c5

25 x=c1; y=c2; f(z){y=g(z); return z+c3} g(k){ return k+c4}; x=f(c5}
26 x=c1; y=c2; if(x<c3){y=y+c4; if(x<c5){y=y+c4} x=x+c5;} x=x+c6

if-true { if-true }

27 x=c1; y=c2; if(x<c3){y=y+c3; if(x>c4){y=y+c5} x=y+c4;} x=x+c4

if-false

28 x=c1; y=c2; if(x<c3){x=x+c4; if(x<c2){y=y+c3} x=x+c5;} x=x+c1

if-true { if-false }

29 x=c1; y=c2; f(z){ if (z < c3){ return z;} return f(z-c3);} x=f(c4);
recursion with 2 recursive calls

30 x=c1; y=c2; f(z){ if (z > c3){ f(z-c3);} return z-c3);} x=f(c4);
non-idiomatic recursion with 2 recursive calls

Table 1: Test items, including the semantic paths they
covered. The SemCFG for item 21 is varset-global varset-
global declare varset-global(call{argset-shadow varset-inner-
shadow return{const}) varset-global. For readability we show
them as item templates with color for data flow paths local
and local-shadowed.We also list parts of the SemCFG in ital-
ics when ambiguous, e.g. for item 15 showing the loop exe-
cuted once with while-true while-false. c1, c2, c3, ... are inte-
gers chosen to fit our item design principles (Section 3.3).

harming other outcomes like self-efficacy. Given our assessment

designed based on a fine-grained scoring model, in this section we

will describe 1) how to score our assessment for a learner, and 2)

how to use the score to target weak skills with remedial instruction

and practice. (This constitutes our use argument).

Towards validated formative assessment for program tracing Koli Calling ’19, November 21–24, 2019, Koli, Finland

After the learner takes the assessment, we can use each item’s

overall correctness to assign a knows or does not know to the SEM-

CFG that item was constructed to assess. If the learner correctly

gives the values of variables asked for by the item, then we assign

knows for the item’s SemCFG in the scoring model. If the learner

gives any incorrect value, we assign does not know for that item’s

SemCFG in the scoring model.

To use the score to target weak skills with remedial instruction

and practice, we can give learners an instructional design specific

to the SemCFG, with instruction, a worked example of how to trace

code that conforms to the SemCFG, and some practice. For example,

for item 15 in Table 1, we might give a worked example for tracing

a while loop that only executes once and updates a variable in the

body of the loop, give conceptual instruction for while loops such

as “while loops can execute zero, one, or many times, depending

on the condition”, and give additional practice problems.

Our test might be used in many ways and contexts. Instructors

might use our assessment or subsets of it in classroom contexts or

in lab, to decide what remedial instruction to include in the next

class session. Our items might also be useful on exams, as they have

more granularity than typical exam questions [27].Within a specific

classroom context, we also envision instructors giving subsets of our

assessment throughout a course, corresponding to material covered

by that time, then use scores to recommend remedial instruction

and practice for those items only (such as a lookup table for each test

item with what practice to do if incorrect). Instructors might also

give parts or the entire assessment as part of reviewing for midterm

or final exams. Lastly, learners might use the test themselves to

diagnose their own knowledge, then lookup relevant practice.

4 DISCUSSION
Our contributions in this paper include 1) a distillation of Kane’s

validity framework, and 2) an application of Kane’s framework to

design a novel formative assessment of language-specific program

tracing. Our particular approach to assessing tracing knowledge

has valuable properties for CS learning, including its granular mea-

surement and its potential to support and guide learning. While our

core assessment validity arguments for formative use are analytical

in nature, rather than empirical, as Kane notes, evidence for the

validity of an assessment is accrued over time across many studies.

We plan to prioritize improving our generalization and extrapo-

lation argument by studying response process via think-alouds for

confounds on performance. After changing items or item designs to

address any issues there, we should strengthen our use argument

directly by giving the assessment then using it to target instruction

and practice, to evaluate if that improves learning. After that, we

should evaluate extrapolation and use claims such as to what de-

gree formative use for test-like tasks supports learners in mental

tracing during debugging, broader program comprehension tasks,

and program writing. While we hypothesize using our assessment

formatively may support that later learning of those more complex

tasks, we should study deploying the assessment and gather direct

evidence on changes in later learning outcomes.

While there are significant opportunities for improving the as-

sessment and gathering evidence for our validity argument further,

Kane’s conception of validity [20] as the quality of an argument
for effectiveness for some use leads us to consider more than just

accuracy and reliability. As a first example, if our goal is to use an

assessment to formatively support learning, even if our assessment

had perfect accuracy but negatively impacted self-efficacy or mind-

set in the process, it might have a net negative effect on long-term

learning, and therefore might not be “valid.” As a second example,

even if including strategy instruction and scaffolding produced

some more slips initially on the test due to unfamiliarity, which

is undesirable for traditional notions of validity as accuracy, prior

work shows that teaching tracing strategies can help learners [56],

so including it may still make for a more “valid” assessment for the

goal of improving learning. The question is therefore what accuracy

is good enough for particular uses of the assessment, and what are

the trade-offs and opportunity costs? As a third example, using

Kane’s framework led us to expand our considerations beyond just

accuracy and reliability, to also include self-efficacy, mindset, and

other learning outcomes, which have not typically been measured

in knowledge assessment studies in CER (e.g., [34, 51]).

Kane’s framework emphasizes considering extrapolation care-

fully; our field should further investigate assessments that extrapo-

late well to real-world contexts. For example, writing code is actu-

ally done with IDEs that can run code; why then assess writing and

tracing code without IDE features [39]? Some past work has tried

more authentic IDE-based assessments in labs [18, 42]; to study

extrapolation, work should ultimately compare test performance

with performance in job or other real-world settings. As another

example, our work in this paper is guilty of assessing tracing as an

abstract skill, rather than situating it in more real-world contexts

of program comprehension, testing, debugging, and other authen-

tic activities that occur in programming and software engineering

contexts. Our only defense of this choice is that the skills required

for our items seem so fundamental that people need to learn them

robustly to learn later concepts (e.g. [25]); this may not be true,

nor is it necessarily true that all in computing can be abstractly

learned then practically applied. We should seek assessments that

extrapolate to real-world contexts, lest we teach only easy-to-assess

tasks and skills.

Beyond improving the formative assessment of tracing, our work

may have implications for other forms of assessment of comput-

ing knowledge. For example, a key idea in our work was building

cognitive models of tracing ability out of the formal semantics of

programming language constructs. Future work could explore sim-

ilar approaches for program writing, building upon theories that

decompose writing into other skills [28, 30, 55].

As we all develop and improve both formative and summative as-

sessments of computing knowledge, it is important to think broadly

about their use. We should not only consider factors like accu-

racy and reliability, but also a much broader diversity of learning

outcomes and how assessments shape learning over time. Our con-

tributions are a small step in that direction, including introducing

Kane’s framework and giving an example of applying it; we hope

our community will explore many more.

5 ACKNOWLEDGEMENTS
This material is based upon work supported by Microsoft, Google,

Adobe, and the National Science Foundation (Grant No. 1836813,

1703304, 1735123, and 1539179). We have seen a little further by

standing on the shoulders of those in CER and other communities.

Koli Calling ’19, November 21–24, 2019, Koli, Finland Nelson, Hu, Xie, and Ko

REFERENCES
[1] Caceffo, R., Gama, G., Benatti, R., Aparecida, T., Caldas, T., and Azevedo, R.

A concept inventory for cs1 introductory programming courses in c. Tech. rep.,

University of Campinas, SP, Brasil, 2018.

[2] Caceffo, R., Wolfman, S., Booth, K. S., and Azevedo, R. Developing a computer

science concept inventory for introductory programming. SIGCSE ’16, ACM,

pp. 364–369.

[3] Cook, D. A., Brydges, R., Ginsburg, S., and Hatala, R. A contemporary

approach to validity arguments: A practical guide to Kane’s framework. Medical
Education 49, 6 (2015), 560–575.

[4] Crow, T., Luxton-Reilly, A., and Wuensche, B. Intelligent tutoring systems

for programming education. Proceedings of the 20th Australasian Computing
Education Conference on - ACE ’18 (2018), 53–62.

[5] Cunningham, K., Blanchard, S., Ericson, B., and Guzdial, M. Using Tracing

and Sketching to Solve Programming Problems. In ICER ’17 (2017), ACM Press,

pp. 164–172.

[6] Danielsiek, H., Toma, L., and Vahrenhold, J. An Instrument to Assess Self-

Efficacy in Introductory Algorithms Courses. In ICER (New York, New York,

USA, 2017), ACM Press, pp. 217–225.

[7] Decker, A. HOW STUDENTS MEASURE UP: AN ASSESSMENT INSTRUMENT
FOR INTRODUCTORY COMPUTER SCIENCE. PhD thesis, 2007.

[8] Decker, A., and McGill, M. M. A Topical Review of Evaluation Instruments for

Computing Education. In SIGCSE (2019), ACM Press, pp. 558–564.

[9] Deimel, L. E. J., and Makoid, L. Developing program reading comprehension

tests for the Computer Science classroom. Proc. IFIP TC 34th World Conf. on
Computers in Education WCEE 85 (1985), 535–540.

[10] Dunn, K. E., and Mulvenon, S. W. A Critical Review of Research on Forma-

tive Assessment: The Limited Scientific Evidence of the Impact of Formative

Assessment in Education. Practical Assessment, Research & Evaluation 14, 7 (2009).
[11] Duran, R., Rybicki, J.-M., Sorva, J., and Hellas, A. Exploring the Value of

Student Self-Evaluation in Introductory Programming. In ICER ’19 (2019), ACM
Press, pp. 121–130.

[12] Elliott Tew, A. Assessing fundamental introductory computing concept knowledge
in a language independent manner. PhD thesis, 2010.

[13] Ericson, B. J., Foley, J. D., and Rick, J. Evaluating the Efficiency and Effectiveness

of Adaptive Parsons Problems. In ICER ’18 (2018), ACM Press, pp. 60–68.

[14] Giordano, D., Maiorana, F., Csizmadia, A. P., Marsden, S., Riedesel, C.,

Mishra, S., and VinikienÄŮ, L. New Horizons in the Assessment of Com-

puter Science at School and Beyond. In Proceedings of the 2015 ITiCSE Working
Group Reports (2015), ACM Press, pp. 117–147.

[15] Gluga, R., Kay, J., Lister, R., Kleitman, S., and Lever, T. Coming to terms

with Bloom : an online tutorial for teachers of programming fundamentals. 14th
Australasian Computing Education Conference (2012), 147–156.

[16] Hattie, J. Influences on student Learning. Tech. rep., 1999.

[17] Hattie, J., and Timperley, H. The Power of Feedback. Review of Educational
Research 77, 1 (March 2007), 81–112.

[18] Jacobson, N. Using on-computer exams to ensure beginning students’ program-

ming competency. ACM SIGCSE Bulletin 32, 4 (2000), 53–56.
[19] Kane, M. J. Current Concerns in Validity Theory. Language Learning 38, 4 (2016),

319–342.

[20] Kane, M. T. Validating the Interpretations and Uses of Test Scores. Journal of
Educational Measurement 50, 1 (mar 2013), 1–73.

[21] Kane, M. T. Validation as a Pragmatic, Scientific Activity. Journal of Educational
Measurement 50, 1 (2013), 115–122.

[22] Kennedy, C., and Kraemer, E. T. What are they thinking?: Eliciting student

reasoning about troublesome concepts in introductory computer science. In Pro-
ceedings of the 18th Koli Calling International Conference on Computing Education
Research (2018), Koli Calling ’18, ACM, pp. 7:1–7:10.

[23] Kingston, N., and Nash, B. Formative assessment: A meta-analysis and a call

for research. Educational Measurement: Issues and Practice 30, 4 (2011), 28–37.
[24] Lemos, R. S. Measuring programming language proficiency. AEDS Journal 13, 4

(1980), 261–273.

[25] Lister, R. Toward a Developmental Epistemology of Computer Programming.

Proceedings of the 11th Workshop in Primary and Secondary Computing Education
- WiPSCE ’16 (2016), 5–16.

[26] Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M.,

McCartney, R., Moström, J. E., Sanders, K., Seppälä, O., and et al. A Multi-
national Study of Reading and Tracing Skills in Novice Programmers. ITiCSE-WGR

’04. ACM, 2004, pp. 119–150.

[27] Luxton-Reilly, A., and Petersen, A. The Compound Nature of Novice Pro-

gramming Assessments. In Proceedings of the Nineteenth Australasian Computing
Education Conference on - ACE ’17 (2017), ACM Press, pp. 26–35.

[28] Luxton-Reilly, A., Whalley, J., Becker, B. A., Cao, Y., McDermott, R., Mirolo,

C., Mühling, A., Petersen, A., Sanders, K., and Simon. Developing Assessments

to Determine Mastery of Programming Fundamentals. In ITiCSE-WGR ’17 (2017),

ACM Press, pp. 47–69.

[29] McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant,

Y. B.-D., Laxer, C., Thomas, L., Utting, I., and Wilusz, T. A multi-national,

multi-institutional study of assessment of programming skills of first-year cs

students. SIGCSE Bull. 33, 4 (Dec 2001), 125–180.
[30] Mead, J., Gray, S., Hamer, J., James, R., Sorva, J., Clair, C. S., and Thomas, L. A

cognitive approach to identifying measurable milestones for programming skill

acquisition. ITiCSE-WGR ’06, December 2006 (2006), 182.

[31] Messick, S. Validity of psychological assessment: Validation of inferences from

persons’ responses and performances as scientific inquiry into score meaning.

American Psychologist 50, 9 (1995), 741–749.
[32] Moss, P. A., Girard, B. J., and Haniford, L. C. Validity in Educational Assess-

ment. Review of Research in Education 30 (2006), 109–162.
[33] Nelson, G. L., Xie, B., and Ko, A. J. Comprehension First: Evaluating a Novel

Pedagogy and Tutoring System for Program Tracing in CS1. ICER (2017).

[34] Parker, M. C., and Guzdial, M. Replication, validation, and use of a language

independent CS1 knowledge assessment. ICER (2016), 93–101.

[35] Parker, M. C., Guzdial, M., and Engleman, S. Replication, Validation, and Use
of a Language Independent CS1 Knowledge Assessment. ICER ’16. ACM, 2016,

pp. 93–101.

[36] Pea, R. D. Language-Independent conceptual “bugs” in novice programming.

Journal of Educational Computing Research 2, 1 (Feb. 1986), 25–36.
[37] Perkins, D., and Martin, F. Fragile Knowledge and Neglected Strategies in

Novice Programmers. IR85-22. Tech. rep., 1985.

[38] Petersen, A., Craig, M., and Zingaro, D. Reviewing CS1 exam question content.

In SIGCSE ’11 (2011), ACM Press, p. 631.

[39] Piech, C., and Gregg, C. BlueBook: A Computerized Replacement for Paper

Tests in Computer Science. In SIGCSE ’18 (2018), ACM Press, pp. 562–567.

[40] Polikoff, M. S. Instructional sensitivity as a psychometric property of assess-

ments. Educational Measurement: Issues and Practice 29, 4 (2010), 3–14.
[41] Porter, L., Zingaro, D., Liao, S. N., Taylor, C., Webb, K. C., Lee, C., and Clancy,

M. BDSI: A Validated Concept Inventory for Basic Data Structures Leo. In ICER
’19 (2019), ACM Press, pp. 111–119.

[42] Prior, J. C. Online Assessment of SQL Query Formulation Skills. Ace ’03 20
(2003), 247–256.

[43] Riese, E. Students’ Experience and Use of Assessment in an Online Introductory

Programming Course. In 2017 International Conference on Learning and Teaching
in Computing and Engineering (LaTICE) (apr 2017), IEEE, pp. 30–34.

[44] Sanders, K., Spacco, J., Ahmadzadeh, M., Clear, T., Edwards, S. H., Gold-

weber, M., Johnson, C., Lister, R., McCartney, R., and Patitsas, E. The

Canterbury QuestionBank. In ITiCSE -WGR ’13 (2013), ACM Press, pp. 33–52.

[45] Schulte, C., Clear, T., Taherkhani, A., Busjahn, T., and Paterson, J. H. An

introduction to program comprehension for computer science educators. ITiCSE-
WGR ’10 (2010), 65.

[46] Sheard, J., Souza, D. D., Klemperer, P., Porter, L., and Zingaro, D. Bench-

marking Introductory Programming Exams: Some Preliminary Results. ICER ’16
(2016), 103–111.

[47] Simon, Sheard, J., D’Souza, D., Klemperer, P., Porter, L., Sorva, J., Stegeman,

M., and Zingaro, D. Benchmarking Introductory Programming Exams. In

ITiCSE ’16 (2016), vol. 159, ACM Press, pp. 154–159.

[48] Snow, E., Rutstein, D., Bienkowski, M., and Xu, Y. Principled Assessment of

Student Learning in High School Computer Science. In ICER ’17 (2017), ACM

Press, pp. 209–216.

[49] Syang, A., and Dale, N. B. Computerized adaptive testing in computer science:

Assessing student programming abilities. In Proceedings of the Twenty-fourth
SIGCSE Technical Symposium on Computer Science Education (1993), SIGCSE ’93,

ACM, pp. 53–56.

[50] Taylor, C., Zingaro, D., Porter, L.,Webb, K., Lee, C., and Clancy, M. Computer

science concept inventories: past and future. Computer Science Education 24, 4
(2014), 253–276.

[51] Tew, A. E., and Guzdial, M. Developing a Validated Assessment of Fundamental
CS1 Concepts. SIGCSE ’10. ACM, 2010, pp. 97–101.

[52] Tew, A. E., and Guzdial, M. The fcs1: a language independent assessment of

cs1 knowledge. In SIGCSE 2011 (2011), ACM, pp. 111–116.

[53] Utting, I., Sorva, J., Wilusz, T., Tew, A. E., McCracken, M., Thomas, L., Bou-

vier, D., Frye, R., Paterson, J., Caspersen, M., and Kolikant, Y. B.-D. A

fresh look at novice programmers’ performance and their teachers’ expectations.

ITiCSE-WGR ’13 (2013), 15–32.
[54] Xie, B., Davidson, M. J., Li, M., and Ko, A. J. An item response theory evaluation

of a Language-Independent CS1 knowledge assessment. In SIGCSE ’19 (2019),

ACM.

[55] Xie, B., Loksa, D., Nelson, G. L., Davidson, M. J., Dong, D., Kwik, H., Tan,

A. H., Hwa, L., Li, M., and Ko, A. J. A theory of instruction for introductory

programming skills. Computer Science Education (2019), 1–49.

[56] Xie, B., Nelson, G. L., and Ko, A. J. An Explicit Strategy to Scaffold Novice

Program Tracing. In SIGCSE ’18 (2018), ACM Press, pp. 344–349.

[57] Zingaro, D., and Petersen, A. Stepping Up to Integrative Questions on CS1

Exams. 253–258.

[58] Zur-Bargury, I., Pârv, B., and Lanzberg, D. A nationwide exam as a tool for

improving a new curriculum. In ITiCSE ’18 (2013), ACM, pp. 267–272.

	Abstract
	1 Introduction
	2 Kane's Framework for Assessment Validity
	2.1 Validity arguments address scoring, generalization, extrapolation, and use

	3 A Program Tracing Assessment for Formative Use
	3.1 Tracing Performance Model
	3.2 Scoring Model
	3.3 Item Design
	3.4 Test Design
	3.5 Scoring and formative use of our assessment

	4 Discussion
	5 Acknowledgements
	References

