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BACKGROUND AND CONTEXT. The pace of advancement of large language models (LLMs) motivates the use of existing infrastructure 

to automate the evaluation of LLM performance on computing education tasks. Concept inventories are well suited for evaluation 

because of their careful design and prior validity evidence. 

OBJECTIVES. Our research explores the feasibility of using an automated benchmarking framework to evaluate computer science 

(CS) concept inventories. We explore three primary objectives: evaluation of LLM performance on the SCS1 and BDSI concept 

inventories; informal expert panel review of items which had variations between LLM and expected student performance; and 

description of challenges with using benchmarking infrastructure as a methodological innovation. 

METHOD. We used the Holistic Evaluation of Language Models (HELM) framework to evaluate the SCS1 and BDSI against 10 

LLMS with zero-shot and few-shot in-context learning: GPT (3.5, 4.0), Claude (1.3, 2.0, 2.1), Llama (7B, 13B, 70B), Mistral v0.1 7B, and 

Mixtral 8x7B. We used psychometric data from prior studies to measure knowledge levels for each LLM run. We then conducted an 

informal expert review to qualitatively explore how question design, CS content knowledge, and LLM design may explain diferences 

between LLM and expected student performances. 

FINDINGS. Our quantitative analysis found that most LLM response patterns refected a below average introductory computing 

student with the SCS1 and did not ft the psychometric 2PL model for the BDSI. Our qualitative analysis identifed that LLMs performed 

well on code infll questions, but poorly on nested conditionals, runtime analysis, and longer questions. We also identifed several 

methodological challenges related to item security, translation, the structure when using HELM. 

IMPLICATIONS. We consider the feasibility of using automated benchmarking as a methodology to support more reproducible, 

replicable, and rigorous investigations to understand the intersection of LLM capabilities, computing concepts, and assessment design. 

We also consider connections between psychometric approaches and LLM evaluations to inform the design of computing assessments 

that are more resilient to LLM advancements. 

CCS Concepts: • Social and professional topics → Computing education; • Human-centered computing → Human computer 

interaction (HCI). 
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1 INTRODUCTION: THE RAPIDLY EVOLVING LANDSCAPES OF LARGE LANGUAGE MODELS 

Large Language Models (LLMs) are advancing rapidly and have caught signifcant public attention [13, 71]. These 

models have hundreds of billions of parameters and train on broad datasets to enable adaptability to a wide range of 

downstream tasks, such as text and image generation [13]. These models also have several educational applications, 

ranging from assisting with grading [85] to generating open-ended practice exercises [110]. Furthermore, since LLM 

training data includes extensive code, researchers have also explored the utility of LLMs specifcally in computing 

education [87]. 

Timely evaluations of new LLM capabilities on computing education tasks, such as performance on assessments [98] 

and ability to generate code explanations [66, 93]), could inform the practice of computing education instructors and 

researchers alike. However, the pace of advancement in LLM performance make them difcult to rigorously evaluate 

through typical scholarly means. In the 100 days since OpenAI released its latest generation LLM, GPT-4 Turbo1, 29 

diferent organizations released 35 new LLMs [99]. By contrast, computing education research publications typically 

publish annually for conferences (e.g. ICER, SIGCSE, ITiCSE, Koli Calling) and quarterly for journals (e.g. TOCE, CSE). 

Evaluations of LLM performance risk outpacing evaluations of their capabilities and afordances within computing 

education contexts. 

In response to the velocity of advancement and the broad adaptability of LLMs, Artifcial Intelligence (AI) researchers 

have resorted to developing benchmarks to evaluate LLM performance. These benchmarks are standardized tasks 

that attempt to measure LLM capabilities across a broad spectrum, including consideration of social biases [23, 79], 

mathematical problem solving, [48], and medical exams [40]. Joint eforts to develop and evaluate benchmarks have 

resulted in collaborative benchmarks such as the Beyond the Imitation Game (BIG-bench), which includes 204 tasks 

developed by 450 authors from 132 institutions [9]. Task topics are diverse, drawing upon problems from linguistics, 

social bias, math, software development, and beyond. 

Automating certain evaluations of LLM capabilities could enable more capacity to conduct more open-ended and 

human-centered evaluations. Echoing Baker [5], the goal of LLMs in computing education is not to use the most 

efective LLMs, but to fnd efective ways to develop knowledgeable and successful (human) learners. Within computing 

education research, this includes broadening participation in computing, preparing educators, developing quality 

curricular materials and assessments, and scaling eforts [10]. We argue that we cannot, and should not, automate 

evaluations of the impact of LLMs on these eforts. What we can do is automate some closed-ended evaluations (e.g. 

LLM performance on an assessment) to encourage deeper, more open-ended analyses (e.g. impacts of LLM usage on 

broadening participation) and thus support more rigorous overall evaluations of LLM performance. Within the context 

of computing education, closed-ended evaluations could include LLM performance of concept-inventories, assessments 

designed to determine whether a student has accurate working knowledge of a specifc set of computing concepts (e.g. 

introductory computing knowledge [82] or data structures [86]). 

This paper explores the feasibility of using an automated benchmarking framework, Holistic Evaluation of Foundation 

Models (HELM) [61] to support more reproducible, replicable, and rigorous evaluations of LLM capabilities in computing 

education. Reproducibility refers to the ability to achieve the same fndings as a prior study using existing data that 

1
released 5 November 2023 [99] 
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3 Using Benchmarking Infrastructure to Evaluate LLM Performance on CS Concept Inventories 

prior study [103], and replication refers to following the design of a prior study with newly collected and analyzed data 

to determine if a new study yields the same fndings as a prior study [103]. 

Prior work in CER include literature reviews of empirical studies, replication studies, and infrastructure to improve 

reproducibility. In a systematic literature review of computing education research literature, Heckman et al. [38] found 

that over 80% of reviewed papers included some form of empirical evaluation, with quantitative evaluation methods 

being most frequently reported. Examples of prior replication studies in CER include investigating subgoal labeling 

[77] and designing a new language-agnostic knowledge assessment [82] in CS1. Replication studies that fail to replicate 

previous fndings are also useful (e.g. [58, 72]), as they can identify alternative explanations for prior fndings. To 

support more reproducibility and replication in CER, prior work has explored pre-registering studies Brown et al. [14]. 

More reproducible and replicable empirical studies can result in knowledge building through meta-analyses [74] and 

theory building [70, 80]. 

We focus on the performance of 10 LLMs on two introductory CS concept inventories: the SCS1, which measures 

introductory computing (CS1) knowledge [82], and the BDSI [86], which measures knowledge of data structures. We 

chose to evaluate concept inventories because they have strong validity evidence and likely were not used to previously 

train LLMs, overcoming two common issues with existing benchmarks [60, 91, 115]. We compared LLM performance 

with expected student performance by using psychometric properties reported from prior studies. This comparison 

enabled us to identify unusual items, which we defne as items for which LLM and expected student performance 

deviated (e.g., LLMs performing unusually well on difcult questions). We then conducted a qualitative review with 

computing education, LLM, and assessment design experts to understand how LLM design, item design, and computing 

concepts may afect LLM performance when compared to expected student performance. By doing so, we explored the 

following research questions: 

(1) How do LLMs perform on the SCS1 and BDSI concept inventories? 
(2) How do AI, computing education, and assessment experts interpret deviations in LLM capabilities 

from expected student performance? 
(3) What are challenges with using benchmarking infrastructure to automatically evaluate LLMs? 

In this paper, we contribute a feasibility study into the use of automated benchmarking infrastructure as a method-

ological innovation for computing education. This feasibility study includes 1) a mixed-methods empirical evaluation to 

evaluate the performance of 10 LLMs on two CS concept inventories in comparison to expected student performance and 

2) a description of methodological challenges in leveraging benchmarking infrastructure to automate LLM evaluations 

for computing education research. 

2 RELATED WORK 

In this section, we describe related work pertaining to the opportunities and challenges with evaluating LLMs with 

benchmarks. We then discuss computing education research on concept inventories (CIs) and their validity evidence. 

Collectively, this prior work situates our study in using HELM [61] as automated benchmarking infrastructure to 

evaluate LLM performance on two concept inventories (SCS1 [82] and BDSI [86]). 

2.1 Benchmarking Large Language Models (in Computing Education Research) 

A language model (LM) aims to model the generative likelihood of word sequences—to predict the probability that 

one word follows another in a stream of text [114]. LM research has advanced signifcantly over the years, with the 
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following progression: 1) statistical models (SLMs) [46], 2) neural language models (NLMs) [8], 3) pre-trained language 

models (PLMs) [59], and, most recently, 4) large language models (LLMs) [114]. These models, broadly speaking, are 

often considered to fall under the broad class of foundation models, an umbrella term for any model trained on broad 

data and capable of being fne tuned for specifc tasks [13]. 

From a technical standpoint, LLMs are simply very large PLMs; this upsizing is achieved by scaling the model or the 

data size and results in better performance on several tasks. One such improvement is the chief source of the current 

fascination with LLMs across domains: LLMs enable applications which possess a remarkable ability to carry on realistic 

dialogue with humans [114]. The most popular example of such an application is ChatGPT [109]. 

LLMs are often evaluated via comparison with existing benchmarks. However, there is still the question of how LLMs 

are actually evaluated (i.e., what measures/metrics are used to evaluate them). In their survey on evaluating LLMs, 

Chang et al. [16] note that evaluation can be split into two categories: automatic evaluation and human evaluation. 

Automatic evaluation is more efcient and standardized, generally focused on measuring LLM performance via the 

following four metrics: 

(1) Accuracy: How well a model performs a predefned task, as measured by autmated metrics such as F1 score or 

Exact Match. 

(2) Calibration: The level of agreement between the model’s confdence level and its actual accuracy. 

(3) Fairness: A measure of whether the model is consistent across various group attributes. 

(4) Robustness: How well a model performs against challenging inputs and adversarial attacks. In some con-

texts, including within HELM, robustness can also include a model’s ability to perform well even with input 

transformations and/or perturbations. 

Human evaluation is more time consuming and subjective, but can lead to more reliable evaluations for tasks that 

are hard to standardize, such as those that involve open generation [84]. Chang et al. [16] outline the following six 

human assessment criteria for LLM evaluation: 

(1) Accuracy: In this case, accuracy refers to the precision and correctness of the output as judged by human experts, 

as opposed to calculation via automated metrics. 

(2) Relevance: The appropriateness and signifcance of the output. 

(3) Fluency: How smoothly the model’s output reads, including syntax, semantics, and tone/style. 

(4) Transparency: How well the model explains its reasoning. 

(5) Safety: The model’s ability to refrain from producing harmful or inappropriate content. 

(6) Human alignment: How well the model produces output that is in line with a human’s expectations and values. 

This criterion seeks to ensure, at a high level, positive interactions with human users. 

An alternative dimension on which LLM evaluation can be considered is open-ended vs. closed-ended evaluations. 

Open-ended evaluations consider an LLM’s profciency at tasks that do not have a single correct answer, such as writing 

open-ended story content or engaging in critical reasoning. Closed-ended evaluations involve tasks that can be graded 

without judgment. A helpful analogy here is to consider the diference between grading a multiple-choice exam (closed 

ended) and an argumentative essay (open ended); both serve their purposes, but are fundamentally diferent. 

Within CS Education LLM research, diferent types of evaluations have been used for diferent research goals. 

Researchers have engaged in open-ended analyses to evaluate automatically generated programming exercises [22], 

context-aware error explanations [92, 100], code explanations [94], and student code feedback [6]. For tasks that simply 

involve evaluating GPT’s performance on an assessment [97] (especially a multiple-choice one), researchers often use a 
Manuscript submitted to ACM 
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closed-ended evaluation followed by a deeper, open-ended analysis [30, 96]. We advocate for this dual approach in 

our work. Stopping at a closed-ended, automatic evaluation for assessment instruments does not provide insight into 

why an LLM performs the way that it does, and it misses the opportunity to learn about how educators might design 

assessment materials that are more resilient to accurate completion by LLMs. We argue in favor of moving from only a 

closed-ended, automatic evaluation of assessment instruments to one that also includes open-ended, human evaluation, 

and in our paper we demonstrate one method of doing so. 

2.1.1 Critiques of Benchmarking. We frame critiques of current automated benchmarking practices from the perspec-

tives of machine learning, psychometrics, and value tensions. 

A machine learning concern with benchmarks relates to benchmark leakage. This term generally refer to when a LLM 

trains on data that we want to evaluate it against, such as training on benchmarks. This violates a fundamental idea of 

machine learning, that a model should never train on the test set. Benchmark leakage refers to data or tasks used for 

evaluation or test sets that are used for model training [60, 91, 115]. Benchmark leakage includes test data contamination 

in various forms: the inclusion of test data guidelines (e.g. information about a concept inventory), examples (e.g. 

concept inventory questions without solutions), and/or labels/annotations (e.g. concept inventory questions annotated 

with solutions) in the pre-training data [60, 115]. Benchmark leakage may also include task contamination, the inclusion 

of task training examples in pre-training data, such as examples of concept inventory question structures [60]. This 

may invalidate zero or few-shot in-context learning approaches, but may also be acceptable when the structure of a 

task is not part of the evaluation (e.g. wanting an LLM to train on the structure of multiple choice questions to evaluate 

computing knowledge using multiple choice questions) [24]. Recommendations to address benchmark leakage include 

benchmarks that refect broader capabilities, data decontamination checking by LLM developers, disclosure of training 

datasets, and more diverse sets of test prompts for benchmark maintainers [60, 91, 115]. However, the inclusion of 

benchmarks in training data for LLMs is an ongoing concern with their continued use. 

A psychometrics-related concern with benchmarks involves validity. There are multiple perspectives of validity 

according to educational statistics and psychometric literature [51, 75, 76]. A common framing of validity defnes it 

as “an overall evaluative judgment of the degree to which empirical evidence and theoretical rationales support the 

adequacy and appropriateness of interpretations and actions on the basis of test scores or other modes of assessment” 

[75, 76]. Related to benchmarking, validity is an evaluative summary of evidence for how people can interpret and use 

benchmark results [51, 76]. Raji et al. [89] has argued that benchmarks lack construct validity [75, 76], evidence that 

LLM performance on benchmarks refects processes, strategies, and knowledge of a latent construct (e.g. computing 

knowledge). A particular concern relates to construct-irrelevant variance [76], where a benchmark is too broad and as a 

result, score variance is associated with confounding constructs or other properties irrelevant to the intended construct. 

The broad applicability of LLMs makes it difcult to consider the validity of interpreting and using benchmark results, in 

part because latent constructs of interest (e.g. “common tasks” [89], bias, programming knowledge) are underspecifed 

and often context dependent. For example, benchmarks to evaluate gender bias in LLMs (e.g. [35, 52, 83]) tend to focus 

on binary genders in relation to occupational stereotypes (e.g. how stereotypes often associate doctors as being men and 

nurses as being women). This consideration of only two genders within occupational contexts is largely because of data 

availability [16, 52]. However, gender is a fuid social construct that can be context dependent (e.g. a nonbinary person 

coming out to close friends, but not to workplace colleagues or school classmates) [31]. Therefore, construct-irrelevant 

variance may occur when considering gender bias in LLM outputs beyond occupational contexts (e.g. in educational or 

social contexts) and when considering more than two genders. 
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An ethical concern with benchmarks relates to the values embedded into designing benchmarks. Dehghani et al. [21] 

identifed four biases that impact LLM researchers benchmarks: task selection bias (dependence of model performance on 

tasks and datasets selected for benchmarks), community bias (efects of community pressures to develop and emphasize 

certain benchmarks), statefulness of benchmarking (decisions made in developing new models are informed by the 

errors and successes of previous models on the same benchmarks, and rigging (selecting evaluation methods and metrics 

that best ft given model and resource constraints). Blili-Hamelin and Hancox-Li [11] drew connections between ethical 

tensions of LLM benchmarking and IQ tests [28]. These ethical concerns related to task-selection, narrowly defned 

standards for construct validity, and positive feedback loops between benchmarks and types model development. 

2.1.2 LLMs in Computing Education Research. LLMs have swiftly been incorporated into computing education research 

within the last year, with researchers exploring their potential for various tasks including enhancing error messages [56], 

generating code [81], generating code explanations [57, 65], and simulating students using LLMs [1]. Some researchers 

have even explored the potential of LLMs to directly generate advanced educational materials, such as with Agrawal 

et al. [2]’s CyberGen system. 

In their 2023 report on the expanding use of generative AI in computing education research, Prather et al. [87] 

identifed 71 articles related to the topic, with over three-fourths published in 2023 itself. Papers centered around 5 

primary topics: 1) assessing the performance of LLMs, 2) position papers/surveys/interviews, 3) interactions between 

programmers and LLMs, 4) use of LLMs to review student work, and 5) use of LLMs to generate educational resources 

and materials. In their report, the authors additionally build upon existing research by benchmarking several generative 

AI models on a group of computing education data sets. 

Specifcally with respect to benchmarking in computing education within generative AI, researchers published a 

wealth of impactful fndings in 2023 and 2024, attempting to keep up with the advancements of language models and 

their efect on performance in various areas. Mahon et al. [68] investigated GPT-4’s performance on standardized 

national exams for high school computer science in Ireland and the UK, fnding that GPT-4 performed quite well overall, 

but struggled with questions involving images or symbols. Savelka et al. [96] found a strong rate of improvement 

when benchmarking GPT-4 (as compared with previous generations of the model) on three Python courses containing 

everything from simple multiple-choice questions to involved free-coding questions spanning multiple fles. Prather 

et al. [87] also report on benchmarking as part of their above paper, focusing on the task of generating a solution to a 

programming problem and reviewing a wide range of available data sets to categorize the content they contained [87]. 

Finally, they replicate one of the frst studies on LLMs in computing education [30] using GPT-4, GPT-3.5 Turbo, and 

CoPilot on the original data, as well as on two previously untested data sets, the Automated Programming Progress 

Standard (APPS) [39] and FalconCode [20]. Like [96], they found signifcant improvements with newer models while 

also reporting on challenges with LLMs parsing question formats and adding additional output which was not specifed 

in the problem description. 

Prather et al. [87] also noted two challenges to benchmarking that are particularly relevant to our work: 1) It can be 

difcult to meaningfully benchmark LLMs because of the speed at which new, more capable models are released, and 2) 

because papers often use a wide variety of prompts and evaluation approaches without delving into the details, it can 

be difcult to validate results. Our methodology addresses the frst concern via our use of HELM: Because HELM is 

consistently updated with the latest LLMs, integrating CIs into the framework will allow new model benchmarks to be 

computed more efciently. To provide the opportunity for replication as well as encourage further work, we describe 

our evaluation methodology in great detail in Section 3. 
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2.2 Concept Inventories 

A concept inventory (CI) is a standardized assessment used to measure student understanding of core concepts in a 

discipline, designed specifcally to elicit information about misconceptions [101]. CIs serve to identify areas of conceptual 

difculty prior to instruction and evaluate the impact of pedagogical interventions in students’ conceptual understanding 

[63]. Concept inventories are typically involve multiple choice items/questions with one correct solution. All other 

solutions are incorrect and collectively referred to as distractors. A well-designed CI item has distractors which each 

refect a common misconception about a concept; thus, based on the answers students select, instructors can identify 

student misconceptions about the material [63]. 

Concept inventories date back to 1992, with the advent of the Force Concept Inventory (FCI, [44]). At the time, 

physics students held several misconceptions about Newtonian force which physics courses were not correcting [36]. In 

the years following its release, the FCI led to revolutionary changes in physics education (e.g. peer instruction [18]) and 

thus precipitated the adoption of CIs across STEM felds [7, 26, 64, 78].CI work reached computer education nearly two 

decades later, starting with introductory work identifying misconceptions [33, 50]. This preliminary work led to the 

publication of the frst two empirically validated CIs in computer science: the Digital Logic Concept Inventory (DLCI) 

and the Foundational Computer Science 1 Assessment (FCS1) [42, 102]. 

With this foundation laid, CI work in computer science slowly began to expand. The frst literature review studying 

such work was conducted in 2014 by Taylor et al. [101], who documented several important points detailing the 

development of research work: 

• Though more researchers were beginning to explore the space, progress was still limited in 2014. Taylor et al. 

recorded 6 total CIs in computer science, and among these only the FCS1 and DLCI were fully developed and 

validated. 

• Misconceptions were common among introductory computer science students, and so CI research is important 

and worth expanding. 

• Taylor et al. noted several challenges in building CIs unique to computer science, revolving around the fact that 

computer science is a young and fuid feld (especially in comparison to a natural science such as Newtonian 

physics) with variations in how it is taught. For example, many courses teach the same concepts in diferent 

programming languages. Do these warrant distinct CIs? Are important, more “overarching” skills in computer 

science–such as debugging and program design–appropriate for inclusion in a CI? Their documentation of these 

challenges went on to explicitly and implicitly infuence future work in this space. 

In the years following Taylor et al.’s review, the speed of computer science CI research increased substantially. In 

2023, Ali et al. published a systematic review with the following updated fndings [3]: 

• As of 2023, there were 33 total computer science CIs in existence, 12 of them validated. 

• Taylor et al.’s prediction of potential challenges proved prescient. Though researchers rarely set out with the 

intention of addressing these challenges, they nearly always presented themselves, and as such, progress toward 

potential solutions was made. For instance, one novel solution to varied programming languages was to develop 

a method for transitioning a CI from one language to another [15]. 

• Research also expanded beyond simply building new CIs using established methods, with some researchers 

actively exploring novel methodologies for CI development itself [90, 107]. 

CI work in computing education continues to expand today. By incorporating CIs as benchmarks/scenarios in HELM, 

we hope to make evaluation of future LLM capabilities more consistent with evaluations on other LLMs and timely. 
Manuscript submitted to ACM 
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2.2.1 Validity Evidence and Psychometrics. Item Response Theory (IRT) methodologies are foundational to psycho-

metrics [19]. IRT provides more sample-agnostic statistics which estimate learner knowledge and question properties 

separately using falsifable models. IRT enables the estimation of question-level and test-level parameters, as well as 

test-takers’ knowledge levels. This provides estimates of the difculty and discrimination of each question for learners 

of diferent knowledge levels. It does this by estimating the correspondence between unobserved latent variables (e.g. 

learners’ computing knowledge, difculty of questions) and observable evidence of knowledge (e.g., people’s responses 

to questions). By ftting response data to a model (e.g. logistic model), we can estimate question parameters (e.g. 

difculty) with fewer assumptions about the characteristics of the sample. We can also make predictive statements about 

learner performance based on knowledge level. By doing so, estimates of test-taker, item, and assessment properties 

generalize beyond the specifc sample of test-takers. 

A key principle of IRT is placing test-takers and questions on the same normally distributed, typically unidimensional 

continuum. The center of 0 represents the knowledge level for the average test-taker of the population. An average test-

taker would have a 50% chance of getting an average question correct. Therefore, if a test-taker’s predicted knowledge 

level is greater than the difculty of the question, then they are more likely to get the question correct. This continuum 

helps model the relationship between a learner’s latent knowledge level and their observed item performance as a 

monotonically increasing function. 

In this paper, we focus in particular on the 2 Parameter Logistic (2PL) model because prior work ft responses 

to the SCS1 [112] and BDSI [86] to the 2PL model. For the 2PL model, each item has two parameters: difculty and 

discrimination. The estimated difculty of a question is the knowledge level at which a test-taker has an equal chance 

(50%) of answering a question correctly and incorrectly. Discrimination is how well a question distinguishes between 

test-takers of varying knowledge levels. A high discrimination value is desireable because it indicates that the probability 

of a test-taker answering correctly changes signifcantly based on their knowledge level. With discrimination, we can 

see if questions at the same difculty level provide more or less information about test-takers’ knowledge. 

3 METHOD 

To answer our research questions, we automatically evaluated the concept inventories with HELM. We then conducted 

expert review [73] on items with LLM performance deviating from expected student performance. We describe our 

methodology for selecting CIs and evaluating CIs with HELM. We then describe our mixed-methods analysis involving 

modeling LLM performance with IRT and reviewing unusual items with AI, computing education, and psychometric 

experts. 

3.1 Concept Inventory Selection & Item Translation 

Authors of CIs generally do not make them publicly available, as widespread access to the test items would interfere 

with the instrument’s validity. If a student saw the questions beforehand, they could simply memorize the answers, and 

the CI would lose its ability to ascertain the student’s misconceptions. In order to obtain the CIs of interest, we reached 

out to each CI’s author team independently. 

The full list of CIs we attempted to obtain was drawn from the validated list of CIs from Ali et al. [3], along with 

two additional CIs on Cybersecurity [41] and the Rust Programming Language [17] which were validated after the 

publication of Ali et al. [3]. We successfully obtained seven CIs, including two and omitting fve. 

The two CIs we included in this study were the Second Computer Science 1 Assessment (SCS1, [82]) and the Basic 

Data Structure Inventory (BDSI, [86]). The SCS1, properly known as the Second CS1 Assessment, is a CI developed in 
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9 Using Benchmarking Infrastructure to Evaluate LLM Performance on CS Concept Inventories 

2016 which focuses introductory computer science concepts [82]. Formally, the SCS1 is a replicated CI, isomorphic to 

the earlier FCS1, or Foundational CS1 Assessment [102]. Parker et al. [82] developed the SCS1 to enable free use by a 

broad research community, arguing that replication of assessments is important to addressing inbuilt issues and adding 

extensions. The SCS1 is an assessment instrument which has validity evidence from multiple independent studies 

[112]. Conceptually, it is suited for computer science students who have completed an introductory programming 

course. Additionally, it makes use of a pseudocode language to enable accessibility to students with backgrounds in 

diferent programming languages. The BDSI, or Basic Data Structures Inventory, was released in 2019 and makes use of 

an extended version of the SCS1 pseudocode language to assess students’ profciency in data structures [86]. It tests 

concepts at a level above the SCS1, and it is suited for students who have completed a CS2 course in computer science, 

generally connoting a course that introduces students to data structures [43]. 

We excluded the fve other CIs for the reasons stated below: 

• Basic Recursion CI [37]: Unlike most CIs, the Basic Recursion CI consists of completely open-ended questions. 

This presented difculties in automatically checking for correctness within HELM. 

• BST and Hash Tables CI [53]: This CI consists of several images and graph structures; determining how to 

best represent these to LLMs that do not support images directly will require further work. Our work provides 

preliminary insight into this, as the BDSI also included graphs, but to a much lesser extent. 

• CCI (Cybersecurity CI) [41]: The CI authors did not consent to inclusion of instrument because of similar ongoing 

research. 

• First-Year Computer Science CI [104]: This CI is currently only available in German, which is not as comprehen-

sible as English to the majority of LLMs; this would have confounded the results. 

• MG-CSCI (Middle-Grades Computer Science CI) [88]: This CI consists primarily of questions in the blocks-based 

programming language Snap!, represented as images. Thus, we faced a similar issue as with the BST and Hash 

Tables CI in representing the questions. 

3.2 Integrating CIs into HELM 

To systematically evaluate LLM capabilities to answer the SCS1 and BDSI concept inventories, we used the automated 

benchmarking infrastructure provided by the Holistic Evaluation of Language Models (HELM). HELM is an open-source 

LLM benchmarking framework built by Stanford’s Center for Research on Foundation Models (CRFM). HELM provides 

benchmarking infrastructure for nearly 150 LLMs and includes over 100 benchmarks, and provides researchers with the 

ability to add new models and benchmarks as work progresses [61]. 2. 

To add a benchmark to HELM, one must implement a HELM Scenario subclass in Python, which defnes how data is 

imported, parsed, and converted into HELM Instance objects. A single Instance object represents a CI question and its 

associated answer choices. For our work, we implemented a new Scenario within HELM, CIMCQAScenario, which 

handles the conversion of a JSON fle representing a CI into a list of Instances that can be passed into HELM’s core 

program. This infrastructure enabled consistent prompt formatting for single-option multiple-choice questions across 

multiple benchmarks. 

Because the CIs we worked with were initially only available as PDF or Microsoft Word fles of questions and answers, 

we structured them into JSON fles as a preprocessing step. In doing so, we made a number of decisions concerning 

2
Number of LLMs, scenarios, metrics as of March 2024. https://crfm.stanford.edu/helm/classic/latest/ 
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how to represent code indentations, graph structures, tables, and other aspects of the CIs that did not have immediately 

clear text representations. We made the following key decisions: 

• Line breaks in code are indicated with a newline character. 

• One level of indentation is represented via four space characters. 

• Questions/answers in table format are represented by listing each row individually, with the column title 

preceding each individual entry. 

• Any tree diagrams in the questions are represented with textual descriptions. 

• Questions with multiple correct answers (specifcally, two questions on the BDSI) are excluded, as HELM does 

not currently support this answer format. 

A more detailed document outlining the design decisions made for each CI is available as supplemental material to 

this paper. 

We attempted to prevent LLM creators from using CIs to train future models but largely failed to do so. The only 

LLM developer that provided the capabilities to restrict data usage at the time of this study was OpenAI. However, this 

required an Enterprise account, which we did not have. We did avoid publicly sharing the CI questions and answers 

as a published benchmark. This mitigated the risk of test data leakage (CI questions and solutions cannot be scraped 

from the web), but did go against typical practices of publishing benchmarks for others to interrogate and use [9]. We 

obtained verifcation from SCS1 and BDSI maintainers that we had permission to use their CIs prior to running any CI 

questions through an LLM. 

Finally, in order to enable few-shot runs of the model, we developed a set of in-context learning examples [24]: 5 for 

the SCS1 and 3 for the BDSI. These examples are not used to fne tune models for better performance; rather, they assist 

HELM in familiarizing itself with the correct input-output structure for evaluation items. This helps reduce situations 

where an LLM response is incorrectly evaluated due to a minor variation in the desired output format. 

We chose to evaluate the following 10 LLMs created by four organizations: 

(1) Anthropic Claude v1.3, Anthropic Claude 2.0, and Anthropic Claude 2.1 (by Anthropic) 

(2) GPT-3.5 Turbo (0613) and GPT-4 (0613) (by OpenAI) 

(3) Llama 2 (7B), Llama 2 (13B), and Llama 2 (70B) (by Meta) 

(4) Mistral v0.1 (7B) and Mixtral (8x7B 32K seqlen) (by Mistral AI) 

These models refect a subset of models from HELM Lite [62] that were available at the time. 

3.3 Analysis 

3.3.1 Qantitative Analysis: Psychometric Properties to Compare LLM and Student Performance. We used difculty and 

discrimination parameters defned in prior work ([86, 112]) to ft the SCS1 and BDSI to separate 2PL models. We then 

checked whether LLM response patterns were consistent with each 2PL model. We checked the person-ft statistic �� , a 

standardization of the test-taker log likelihood function � to address the interaction of ��(�) and � [19, 25, 45]. �� is 

standardized, so a value of 0 denotes a perfectly expected or typical response pattern. Values above 2.0 could indicate 

overftting (unexpectedly good ft) and below -2.0 could indicate noisy or unexpectedly poor ftting [45]. If the person-ft 

statistic was acceptable (|�� | < 2.0), then we reported the latent knowledge level � of each LLM run, efectively treating 

each one as independent test-takers and answering our frst research question. � is normalized, with 0 denoting an 

“average” test-taker, > 0 denoting an above average test-taker, and < 0 denoting a below average test-taker [19]. 
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3.3.2 Qalitative Analysis: Informal Expert Panel Review. We identifed unusual items in which LLM performance on 

these items deviated from expected student performance. To calculate expected student performance, we used the 

difculty parameter (�) from the 2PL model for each item. � is efectively a z-score [19], with the proportion of the 

normal curve above that value representing the proportion of students with a ≥ 50% expected probability of getting the 

item correct. We then compared that percentage to the proportion of LLMs that got an item correct. 

We considered two kinds of unusual items: those with high difculty and those with low difculty. Unusual high 

difculty items are those with the greatest difculty that had a greater proportion of LLM runs getting them correct 

when compared to the expected proportion of students. Therefore, unusual high difculty items are those in which LLMs 

performed unexpectedly well. Unusual low difculty items are those with the lowest difculty in which the proportion 

of LLM runs getting them correct is less than the expected proportion of students getting it correct. Therefore, unusual 

low difculty items are those in which LLMs performed unexpectedly poorly. We considered at most three high difculty 

and low difculty items that fulflled this criteria. 

Three authors participated in reviewing unusual items. These authors had experience in computing education 

research (three authors had collectively published over 12 papers to computing education research venues), teaching 

higher education computing courses (two authors had served as instructors; all four had experience as teaching 

assistants), psychometrics (one author had previously published multiple papers related to educational statistics and 

assessment design, and one author had developed materials for machine learning courses taught internationally), and 

LLMs (one author had published multiple papers on benchmarking and had industry experience developing deep 

learning algorithms). 

The goal of this informal expert panel review [54] was to understand how LLM design, assessment design, and/or 

computing knowledge may explain deviations in LLM and expected test-taker performances. For each unusual question, 

experts considered whether the original question design, computing concept it assessed, or an aspect of the LLM design 

may have resulted in performance that difered from the expected question difculty. We also considered whether the 

prompt structure could have been a confound. A previous psychometric evaluation of the SCS1 [112] included item 

trace plots as supplementary material [111]. These plots show the expected probability of selecting each multiple choice 

option for learners of varying knowledge levels. We used these plots to determine whether trends in incorrect LLM 

responses aligned with common student misconceptions. 

4 RESULTS 

4.1 RQ1: LLM Performance 

Table 1 shows the results of person-ft statistics, with it and Figure 1 showing the knowledge level estimates for each 

LLM run with an acceptable ft. For the SCS1, we found that the 2PL model poorly ft the response patterns for Anthropic 

Claude v1.3 (zero and few shot), Llama 2 (7B) (zero and few shot), and Llama 2 (70B) (zero shot). The remaining 

models also had response patterns that refected below average CS1 students, ranging from Llama 2 (7B) with few shot 

prompting (� = −2.52 ± 0.58) to GPT-4 (0613) with zero shot prompting (� = −0.33 ± 0.22). 

Only fve of the 20 LLM runs had responses that ft the 2PL model for the BDSI, with all other models being too 

noisy and poor of fts (�� < −2.0). The LLMs with acceptable person-ft for the BDSI were all three Anthropic Claude 

models with few shot prompting and GPT-4 (0613) with zero and few shot prompting. These fve instances produced 

responses that refected CS2 students with data structures knowledge ranging from approximately average (GPT-4 

(0613) with zero shot, � = 0.12 ± 0.44 to above average (Anthropic Claude 2.0 with few shot, � = 0.85 ± 0.51). 
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Table 1. Person fit statistics and knowledge estimates for LLMs with diferent prompting for the SCS1 and BDSI concept inventories. 
�� is a person-fit statistic, with ** denoting unacceptable fit ( |�� | > 2.0). � and standard error denote knowledge estimates of each 
LLM with an acceptable person fit. 

model name prompting 
SCS1 
�� 

(24 questions) 
� std. error 

BDSI 
�� 

(11 questions) 
� std. error 

claude-v1.3 
claude-v1.3 
claude-2.0 
claude-2.0 
claude-2.1 
claude-2.1 
gpt-3.5-turbo-0613 
gpt-3.5-turbo-0613 
gpt-4-0613 
gpt-4-0613 
llama-2-7b 
llama-2-7b 
llama-2-13b 
llama-2-13b 
llama-2-70b 
llama-2-70b 
mistral-7b-v0.1 
mistral-7b-v0.1 
mixtral-8x7b-32kseqlen 
mixtral-8x7b-32kseqlen 

zero shot 
few shot 
zero shot 
few shot 
zero shot 
few shot 
zero shot 
few shot 
zero shot 
few shot 
zero shot 
few shot 
zero shot 
few shot 
zero shot 
few shot 
zero shot 
few shot 
zero shot 
few shot 

-2.31** 
-2.79** 
-1.01 
-1.13 
-0.99 
-0.36 
-1.06 
-0.26 
1.80 
0.62 
0.55 

-2.95** 
-2.34** 
-0.71 
-3.25** 
-0.80 
-0.42 
-0.58 
-1.34 
-1.82 

-

-

-1.06 
-0.91 
-1.01 
-0.72 
-1.45 
-0.81 
-0.33 
-0.34 
-2.52 
-

-

-0.91 
-

-1.11 
-1.16 
-1.08 
-0.80 
-0.61 

-

-

0.32 
0.30 
0.31 
0.27 
0.39 
0.28 
0.22 
0.22 
0.58 
-

-

0.30 
-

0.33 
0.34 
0.33 
0.28 
0.25 

-4.05** 
-0.76 
-2.14** 
-1.59 
-2.65** 
-0.31 
-2.26** 
-2.26** 
-0.46 
-0.31 
-5.12** 
-5.12** 
-4.35** 
-4.91** 
-2.70** 
-3.93** 
-4.50** 
-2.26** 
-3.09** 
-2.7** 

-

0.66 
-

0.46 
-

0.85 
-

-

0.12 
0.13 
-

-

-

-

-

-

-

-

-

-

-

0.48 
-

0.46 
-

0.51 
-

-

0.44 
0.44 
-

-

-

-

-

-

-

-

-

-

Table 2. Number and percentage of invalid responses for LLM runs with zero and few shot in-context learning for each CI. Percentages 
calculated from 110 responses for each learning context for BDSI, and 240 responses for the SCS1. 

zero shot few shot 
BDSI 20 (18%) 0 (0%) 
SCS1 46 (19%) 4 (2%) 

Four runs produced responses that ft the 2PL models for both concept inventories: Anthropic Claude 2.0 and 

Anthropic Claude 2.1with few shot learning and GPT-4 (0613) with zero and few shot learning. In all four runs, response 

patterns for the SCS1 refected below average CS1 knowledge (� < 0) but approximately average to above average 

knowledge of data structures (� ≥ 0), typically considered a more advanced CS2 concept. 

4.1.1 Validity Check: Number of Invalid Responses. LLM runs could still output invalid responses (e.g. a new line or 

word), which HELM would score as incorrect. We therefore attempted to correct for this using few shot in-context 

learning, as described in section 3.2. 

Table 2 shows the frequency of invalid responses outputted from zero shot and few shot learning runs for each 

concept inventory. With zero-shot learning, we see that about 1 in 5 outputs are invalid. However, incorporating 

examples for few-shot learning resulted in no invalid responses for the BDSI and only 2% invalid responses for the SCS1 

across all 10 LLMs. This suggests that for LLM runs for few-shot learning a valid answer is almost always outputted. 
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Fig. 1. Knowledge Estimates of LLM runs based on the the 2PL models for the SCS1 and BDS1 concept inventories. Models with 
unacceptable fit ( |�� | > 2.0) are noted in box on right and not ploted. 

4.2 RQ2: Informal Expert Panel Review 

To answer our second research question and identify potential explanations for deviations in LLM and expected student 

performance, we conducted an informal expert panel review with three authors, as described in Section 3.3.2. We 
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Table 3. Qestions from the SCS1 and BDSI that we included in the expert panel review. Unusual items with high dificulty denote 
that LLMs performed beter than expected student performance. Unusual items with low dificulty denote that LLMs performed 
worse than expected student performance. ** denotes that we designed a training item for in-context based on that item. 

SCS1 BDSI 
High difculty items which 
LLMs performed well on 
Low difculty items which 
LLMs performed poorly on 

Q15**, 7**, 26** 

3, 19 

7** 

4, 3**, 8 

identifed nine unusual items to include in our informal expert panel review, as shown in Table 3. In this section, we 

note key trends we identifed 3. 

For the expert panel review, we considered the information relating to item design (learning objective/concept, 

question type, number of responses, “select one” or “select all that apply,” whether item includes code or images, correct 

answer, item and all responses), psychometric properties (difculty and discrimination parameters from 2PL model, item 

trace plots for SCS1 items only), and LLM-related information (number of tokens in input prompt, whether training 

example was based on item, LLM run responses and correctness). 

4.2.1 LLMs performed well on code-infill, poorly on nested conditionals. All three unusual high difculty items for the 

SCS1 (Q15, 7, 26) were code infll/editing questions which provided a short code segment and required test-takers to 

fll in two or three gaps in the code with the correct code segments. They assessed the concepts of function return 

operators (Q15), while loops (Q7), and logical operators (Q26). Only 1-4% of CS1 students would be expected to get each 

question correct according to the extremely high item difculties (� = 1.77 − 3.11). However 20–45% of LLM runs got 

these questions correct. One potential explanation is that code infll/editing questions are a particular emphasis in LLM 

design [34], as evidenced by how GPT-4 (0613) and Llama 2 (7B) with few-shot learning correctly answered all three 

of these items. Another potential explanation is in how the question structure itself may have implicitly prompted 

the LLMs to answer these questions as a coding expert, such as how a prompt beginning with “you are an expert 

programmer” compared to “you are a novice programmer” can result in diferent outputs[106]. 

LLMs performed poorly on a low difculty SCS1 item involving nested conditionals (SCS1 Q19). This item was 

relatively difculty (� = 0.74), with an expected 23% of CS1 students getting the item correct. LLMs did worse than this, 

with only 15% (3/20) of LLM runs getting this question correct: GPT-3.5 Turbo (0613) with few shot learning, GPT-4 

(0613) with zero-shot learning, and Mistral v0.1 (7B) with zero-shot learning. Interestingly, both GPT-4 (0613) and Mistral 

v0.1 (7B) selected the correct response with zero-shot learning, but diferent incorrect responses with few-shot learning. 

We noticed the same distractor selected by 60% (12/20) of LLM runs, including three of the four most advanced models 

in their respective families with few shot learning: Anthropic Claude 2.1, Llama 2 (70B), and Mixtral (8x7B 32K seqlen). 

This distractor option refected the erroneous execution of the outermost else statement despite the corresponding 

if block already being run. The item trace plot showed that this distractor was never the most commonly selected 

response option for CS1 students of any knowledge level. Therefore, the LLMs runs clustered towards a distractor that 

refected a misconception that CS1 students did not often demonstrate. 

3
To maintain item security, we will not show actual items and will avoid naming correct and incorrect responses. We will mention exact question 
numbers to support knowledge building about these concept inventories across publications. This reporting practice is consistent with prior work (e.g. 
[41, 82, 86, 112]) 
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4.2.2 LLMs clustering towards same distractors. The response pattern for the unusual low difculty item SCS1 Q3 was 

one that aligned closely with student responses. This question asked test-takers to trace code with a while loop and 

select the correct output from fve options. Based on the item difculty (� = 0.27), we would expect 39% of CS1 students 

to get this item correct. Only 25% (5/20) of scenarios outputted the correct response. Comparing LLM responses to 

the item trace plot revealed that most LLM runs (11/20) outputted the same distractor as the most commonly selected 

response amongst CS1 students with below average knowledge. These runs were all of smaller/older LLMs (Anthropic 

Claude v1.3, GPT-3.5 Turbo (0613), Mistral v0.1 (7B) with zero and few shot; Anthropic Claude 2.0 and Llama 2 (7B) with 

few shot; Llama 2 (13B) with zero shot) with the exception of Llama 2 (70B) with few shot. Only the most advanced 

models got the correct answer (Anthropic Claude 2.0 and GPT-4 (0613) with zero and few shot, Mixtral (8x7B 32K 

seqlen) with few shot). This pattern of LLM run outputs closely refected expected CS1 student performance, with 

smaller LLMs selecting the same distractor as less knowledgeable CS1 students, and larger LLMs selecting the correct 

answer. 

For BDSI Q4 (unusual low difculty item), LLMs clustered towards a certain distractor that refected the run time of 

typical mapping data structures. This item asked test-takers to consider the performance of implementing key-value 

interface with a linked list. This item was very easy (� = −2.71), with over 99% of CS2 students expected to get it correct. 

However, only 50% of LLM runs the correct answer (include GPT-4 (0613) and Llama 2 (70B) for both zero and few shot 

and Anthropic Claude 2.1 with zero shot), with 25% selecting the same distractor (including Anthropic Claude 2.1 with 

few shot learning and Mixtral (8x7B 32K seqlen) with zero and few shot learning). That distractor refected constant 

time efciency. LLMs may have selected that distractor because the question described a mapping-like structure (like a 

hashmap), which typically have constant time lookup. 

BDSI Q3 (unusual low difculty item) also resulted in LLM runs clustering towards the same distractor with no 

clear explanation. We considered this question as requiring more creative problem solving because it asked students 

to identify the best experiment to determine whether a linked list was singly-linked or doubly-linked. It was a very 

easy item (� = −1.38), with an expected 92% of CS2 students getting it correct. While Llama 2 (70B) and Mixtral (8x7B 

32K seqlen) with zero-shot learning were the only two (10%) runs to output the correct response, the same two LLMs 

with few shot learning were amongst the 50% of runs that selected the same distractor. We could not identify a novice 

misconception that would lead to selecting that particular distractor. This was even more unusual because we had 

designed a training item based on the structure of this item, and the answer to the training item was the same as the 

distractor selected in half of LLM runs. Therefore, the training item could have afected model outputs, but we could 

not identify an exact explanation as to how. Another explanation for the poor LLM performance could be the extensive 

question description, which included an interface describing eight methods. This resulted in the item being the longest 

of all items we evaluated across both the BDSI and SCS1 (2801 tokens). 

4.2.3 Modifications of item structure for integration in HELM may have afected dificulty. BDSI Q7 required test-takers 

to write a function to compute a property of a binary tree. The item was relatively difcult (� = 0.53), with an expected 

30% of CS2 students getting this question correct. LLMs performed well on this item with 55% (11/20) of LLM runs 

outputing the correct answer. A likely explanation was in how we had to change the answer structure to align with 

HELM capabilities. 

The original item provided four potential options and required CS2 students to select all that applied. There was only 

one correct answer though. Because the HELM scenario we used could only allow one correct answer as an output, we 

efectively changed the structure of the question to prompt the LLMs to select exactly one option (further described in 
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Section 4.3.3). By changing the item from “select all that apply” to “select one,” we reduced the number of valid answer 

options, potentially explaining why LLMs performed better than expected CS2 students. 

4.3 RQ3: Challenges with Automating LLM Benchmarking 

We answered our third research question by identifying challenges and opportunities with using automated bench-

marking infrastructure in computing education research. Our goal was to use concept inventories as a benchmark and 

use the HELM infrastructure to automatically evaluate the performance of current (and hopefully future) LLMs against 

these CIs. In this section, we describe key challenges to using such a methodology: 

4.3.1 Item security and benchmark leakage. Benchmark leakage (as described in Section 2.1.1) is a key concern to 

CIs because of risks of excessive item exposure. Questions in CIs do not change, so ensuring the security of these 

questions is crucial to the validity of interpreting and using their results. CI maintainers typically do not publicly post 

their instruments, instead granting access to their instruments on a case-by-case basis. We therefore assumed that CI 

items were not part of a training set for any LLMs. However, weak and shifting privacy policies typically enable LLM 

developers to use past prompts as future training [60, 91, 113, 115]. We describe our processes of gaining consent from 

CI maintainers and our failed attempts to limit benchmark leakage in Section 3.1. Using CIs as a benchmark opens a 

“Pandora’s box” whereby we can assume that LLM developers will use CIs as future training data (as unlabeled data at 

least). 

4.3.2 Faithful translation of CI items. As described in Section 3.2, HELM expects data to be passed in as a list of Instance 

objects, where an Instance represents a question and its associated answers. Typically, this data is prepared by frst 

obtaining the requisite data set in JSON format, which streamlines the overall process (as well as allows users to take 

advantage of the many existing examples within HELM). As such, preparing CIs for HELM required us to convert them 

from their existing forms—generally human-readable PDFs—into JSON format. The difculty here arose from making 

certain design decisions (see Section 3.2) which allowed us to represent CIs in such a format while ensuring we did not 

change the spirit of what the authors wished to convey. For example, the BDSI consisted of several questions involving 

graphs, which we needed to translate into a text representation both suitable for JSON and comprehensible to LLMs. 

Once these decisions were made, the translation was fairly straightforward, but time consuming. 

4.3.3 Limited structure of items. We were limited to multiple-choice questions with single answers in our work, as 

it was unclear how to test for open-ended responses within HELM. Most directly, this limitation led to the exclusion 

of the Basic Recursion Concept Inventory [37] in our work, as it is a rare instance of a CI which asks open-ended 

free-response questions. Additionally, HELM does not currently support questions with multiple correct answers (i.e. 

“select all that apply” questions), which led to the exclusion of two such questions in the BDSI. 

4.3.4 Development of training questions for HELM. While LLMs are popularly associated with more advanced models 

such as GPT-4 (0613), it is important to remember that not all models are quite so capable. Several models in HELM 

(such as Mistral v0.1 (7B) and Anthropic Anthropic Claude v1.3, in our work), require example question-answer pairs 

as few-shot training examples for in-context learning [105] in order to produce answers in the desired format. For 

most HELM examples, researchers can just take a subset of the existing data set as a training/test split. However, this 

approach was not suitable for CIs. Unlike other data sets, CIs are already small, and researchers will likely want to learn 

about LLM performance on all items. Using existing questions as few-shot training examples prevents those questions 

from being evaluated; thus, researchers must write additional example questions to mimic the structure of CI items. It 
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is worth noting, however, that these questions do not need to be high-quality assessment questions or even directly 

related to the topic of the CI; they simply need to match the input and output structure of the other questions. 

4.3.5 Barriers to accessing and using LLMs within HELM. Firstly, the use of HELM required the preparation of data 

into a standardized machine-readable format and the use of a custom API, thereby requiring programming knowledge. 

Though LLM research can sometimes be done within user interfaces, such an approach does not scale for evaluating 

entire CIs and their individual items. Therefore, APIs must be used. Using a new type of data set for HELM requires 

researchers to prepare data in a standardized machine-readable format (see 3.2). This work contributes a new Scenario, 

called CIMCQA, to HELM, which future researchers may take advantage of. However, for other types of questions (e.g. 

free-response items), researchers will need to author their own Scenarios if they cannot adapt existing one. Furthermore, 

there are many subtleties within HELM itself that are difcult to navigate but essential to obtaining results. Our research 

was only made possible because an author was a member of HELM’s research engineering team. 

Finally, one of the more difcult challenges is obtaining access to all the available models in HELM. LLMs have 

barriers to access. Most are accessible through closed or limited APIs which users typically must pay for. Open-access 

LLMs often require owning or renting a CPU or paying for a commercial model interface platform to host the model. 

These constraints also apply to HELM. HELM users must have their own API keys for every single model they wish to 

use, a fairly limiting restriction considering the total number of models. These challenges to LLM access stand in the 

way of using benchmarking infrastructure to support replication of benchmark evaluations on future LLMs. 

5 DISCUSSION: UNDERSTANDING OF LLM PERFORMANCE FOR MORE VALID ASSESSMENTS 

In this paper, we explored the feasibility of using HELM, an automated benchmarking framework, as a methodology 

to support more reproducible, replicable, and rigorous empirical studies related to large language models (LLMs) in 

computing education. We evaluated the performance of 10 LLMs with zero and few-shot learning on two CS concept 

inventories (CIs): the SCS1 [82] to assess introductory computing knowledge, and the BDSI [86] to assess basic data 

structures knowledge. We found that most LLM runs produced SCS1 responses that aligned with below average 

introductory computing (CS1) students and BDSI responses that could not be modeled with a 2PL model. In an informal 

expert review comparing LLM performance to item-level psychometric properties, we found that LLMs performed 

well on code infl questions, but poorly on questions involving nested conditionals, runtime analysis, and longer 

question descriptions. We also identifed challenges to our methodology involving CI item security, item translation, 

and barriers to LLM access. Through an empirical investigation that compares LLM and expected student performance 

using psychometric data and describes challenges to using HELM, this paper contributes as a feasibility study into the 

use of automated benchmarking infrastructure as a methodological innovation to computing education research. 

In this section, we interpret our fndings as they relate to the roles of LLMs in the iterative process of assessment design 

in computing education. We specifcally consider the implications of using automated benchmarking infrastructure to 

investigate the rapidly evolving intersections of LLM capabilities, computing concepts, and assessment design. 

5.1 Limitations and Threats to Validity 

One interpretation of our study is that it sufers from limitations and threats to validity that invalidate our fndings. 

This is of particular concern as we investigate the feasibility of a new methodology. 

Our study sufers from convenience sampling of LLMs to include. We included 10 LLMs from 4 diferent organizations 

because we had access to their APIs. While these LLMs are popular and widely used at the time of our studies and prior 
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evaluations of LLMs typically consider fewer LLMs (e.g. [29, 56, 66, 98]), our fndings are limited to the LLMs in this 

set. While they enable us to make hypotheses about how other LLMs might perform on the SCS1 and BDSI, we rely 

on future work to conduct hypothesis-driven studies that could yield more defnitive claims. Furthermore, the HELM 

infrastructure makes evaluation of these CI items on additional LLMs more reliable, thus supporting replication of this 

study. 

A threat to validity relates to the choices we made while translating CI items (particularly code and images) into 

the text passed into HELM. While we cannot make the example prompts we passed in public to maintain some level 

of item security, we attempted to be transparent in our design decisions in Section 3.2. Nevertheless, the possibility 

remains that some design decisions caused LLMs to interpret a CI item diferently from how a student may interpret 

the original item, thus confounding our results. One example of this is how we changed a “select all that apply” item to 

a “select one” item to make it compatible with HELM infrastructure, as described in Section 4.2.3. 

Another threat to validity is in our modeling of LLM responses as independent test-takers. Item Response Theory 

assumes that test-takers are providing responses independently of each other [19]. We make this assumption while 

recognizing that all 10 LLMs were created by four organizations. Furthermore, we attempt to model LLM runs as test-

takers and measure their knowledge levels, � . We checked for adequate ft to the psychometric models prior to reporting 

knowledge levels. We also used few-shot learning to reduce the number of invalid (and therefore incorrect) LLM 

responses to almost zero. Section 4.1 fully describes these checks that we conducted to ensure more valid comparison 

of LLM responses to expected student responses. 

We also acknowledge that our informal expert review panel might have led to potentially biased results. We aim for 

this work to act as a pilot that sets the stage for future work with a larger panel and formally established methodology 

[73]. 

A fnal threat to validity is that benchmark leakage will invalidate future automated benchmarks. We should expect 

that LLMs may incorporate the CIs used for the benchmarks into their training data. This is currently an unavoidable 

risk, however, since few LLMs provide the facility to prevent leakage, and benchmarking cannot be done without passing 

in the data. Future work can investigate the use of techniques to mitigate and detect benchmark leakage [60, 91, 115]. 

5.2 Automating Closed-Ended Evaluations for Reproducibility and Replicability 

Another interpretation of our fndings is that the use of automated benchmarking infrastructure supports more 

reproducible and replicable evaluations of LLM performance on tasks related to computing education. As stated in 

Section 2.1, it is easier to automate more closed-ended tasks with clear measures of correctness, such as multiple-choice 

questions in CIs. While benchmarks are usually shared publicly, this should not occur to ensure the item security of CI 

items. 

Before a CI can actually be passed into an LLM, it must be translated efectively into a format that a language 

model can interpret. It is well documented that prompting LLMs in certain ways can change the output [87, 106], 

and this extends to the CI questions themselves, because they become part of the prompt. While we documented our 

design decisions to aid replicability, we do not suggest our design decisions were ideal. The possibility remains that 

an alternative translation may have made greater sense to LLMs, or better enable them to mimic actual students. We 

identify this as a potential area of future work. 

Our use of HELM helped address a key confound to evaluating LLM performance in assessments: determining 

correctness. Mahon et al. [68] identifed how a majority of ChatGPT’s incorrect responses to multiple choice questions 

involved ChatGPT outputting correct explanations, but incorrect or invalid outputs. Our use of HELM’s few shot 
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in-context learning functionality reduced the number of invalid responses to 0-2% (Table 2), thereby almost eliminating 

the confound of LLMs producing an invalid response. Furthermore, sensitivity to prompt structure is a likely explanation 

for LLMs outputting incorrect responses despite correct explanations [49, 68]. Frameworks such as HELM can help 

address this by enabling more consistent and reusable structures of input prompts of LLMs. In our study, we developed 

the CIMCQA Scenario to do this (see Section 3.2), which future work can interrogate, utilize, and/or adapt. This 

transparent and more consistent prompt structuring can support more reproducible evaluations. Furthermore, HELM’s 

continuous integration of new LLMs drastically reduces the barriers to future work that replicates previous evaluations 

on new LLMs, a key challenge to LLM research in computing education moving forward [87]. 

Taking a broader perspective, accessing and running more LLMs with HELM is perhaps the most pressing research 

challenge. More ambitious future work could involve extending this methodology to benchmark and evaluate all CIs 

with validity evidence against all common and modern LLMs in HELM. Though HELM provides the framework needed 

to carry out this work, it does not by default provide the monetary resources, as users must provide possess independent 

access for any model they desire to use. With the large number of LLMs available in HELM and at least 14 computing 

CIs with validity evidence [3, 41], the amount of resources needed is potentially best suited for a team of collaborative 

researchers. 

A key implication of automated benchmarking infrastructure for reproducible and replicable computing 

education research is the investigation of hypotheses at the intersection of LLM capabilities, item design, and 

computing concepts. For example, our informal expert panel review (Section 4.2.1) identifed that LLMs performed 

poorly on a low difculty SCS1 question that CS1 students performed well on. This item involved tracing pseudocode 

which contained a nested conditional. We generated multiple explanations as to why LLM performance deviated from 

expected student performance, including aspects of the item design (LLMs may struggle to parse the pseudocode) or 

computing concepts being assessed (LLMs may struggle with nested conditionals). A computing education researcher or 

practitioner could feasibly investigate these hypotheses by designing items to explore each one (e.g. a pool of equivalent 

items in the pseudocode and other programming languages to determine LLM sensitivity to programming language, and 

a pool of diferent items assessing nested conditionals in the same programming language to determine LLM sensitivity 

to a computing concept). They could then use automated benchmarking infrastructure such as HELM to efectively 

control for confounding variables (e.g. prompt structure, determining correctness, etc.) when evaluating performance of 

diferent LLMs, thus supporting reproducibility. Crucially, they could also control for these confounds when evaluating 

new LLMs, thus supporting replicability. 

5.3 Mixed-Methods Evaluations for Rigor 

A fnal interpretation of our fndings is that applying mixed-methods to connect LLM outputs with additional informa-

tion such as psychometric evidence provides more rigorous investigations into the intersection of LLM capabilities, 

assessment design, and computing concepts. 

For LLM runs with response patterns that ft the CI’s 2PL models, we found that LLMs refected knowledge of below 

average introductory CS knowledge but of above average data structures knowledge (see Section 4.1). We would not 

expect this pattern with any students because introductory CS knowledge is taught before and is typically considered 

pre-requisite knowledge to data structures. Future work can investigate whether this pattern is consistent and why this 

may be the case. 

Existing psychometric data enabled our informal expert panel review to compare LLM responses to expected student 

responses. The use of concept inventories as benchmarks with existing validity evidence enabled more rigorous 
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evaluations. Furthermore, because concept inventories are specifcally designed to identify student misconceptions, it 

was easier to pinpoint what exact topics LLMs struggled with when evaluating our results. This is a key diference 

between our benchmarking work as compared with prior work, which often used summative assessments from courses 

[96] or standardized assessments which may have validity evidence, but lack the structure and transparency of concept 

inventories to enable identifcation of misconceptions for specifc concepts [49, 68]. In particular, we used item trace 

plots from Xie et al. [112] to consider whether LLMs and CS1 students of diferent knowledge levels selected similar 

or diferent distractors for the SCS1. This served as a key signal to identify whether LLM outputs refected common 

student misconceptions (clustering towards similar distractors). When LLMs clustered towards uncommon distractors, 

we developed hypotheses related to item design, LLM design, and computing concepts, as described in Section 4.2. 

Mixed-methods future work could further explore these hypotheses to inform the design of computing pedagogy 

and assessment that are more resilient to changing LLM capabilities. Such future work could follow a similar mixed-

methods approach by designing new items to benchmark, evaluating them with students and/or LLMs (using automated 

benchmarking infrastructure), and then conducting qualitative follow-up investigations with domain experts and 

students to better understand patterns. Future work could also investigate student perspectives on unusual items. 

Cognitive Interviews [27] with students in the target population could provide a more clear understanding of students’ 

thought processes when answering questions, as well as new hypotheses on why LLMs perform diferently than 

students on given items. 

A key implication of more rigorous evaluations with automated benchmarking infrastructure is the 

opportunity for LLM-aided assessment design. Prior work in computing education has found that LLMs perform 

well on many programming tasks [1, 57, 65, 81, 87]. This is in part because LLM developers train their models on vast 

repositories of openly available code (e.g. GitHub) and have fnancial incentive to support programming tasks (e.g. 

code infll [34]). Therefore, LLM advancements will likely make the design of computing assessments particularly 

more challenging. Automated benchmarking infrastructure may be able to support assessment designers by simulating 

students to gauge item difculty and/or using psychometric evidence to iteratively design more LLM-resilient items. 

Future work may also investigate the potential for LLMs to support automating aspects of item generation [47, 95], 

such as by generating informative distractors for multiple choice items [55, 69] or developing parallel items with similar 

difculty [47]. 

6 CONCLUSION 

In this paper, we described our process in efciently and systematically evaluating LLM performance on computing 

education assessments with validity evidence. It is our hope that our work can contribute to a deeper understanding of 

the impact of LLMs on assessing students, as well as set the foundation for future work that can inform instructors in 

designing assessments that are more resilient against completion by LLMs. 

Given the growing waves of LLMs and Generative AI tools, we want to acknowledge that advancements of LLMs 

do not necessarily translate to equitable benefts to students [12, 32, 67, 108]; assessments are not perfect or all-

encompassing measures of learning [4, 75, 76]; and not all facets of computing are well-represented in AI tools [68, 87]. 

Therefore, we hope that computing education can leverage automated benchmarking infrastructure to encourage more 

cross-disciplinary, human-centered, and enduring investigations at the intersections of LLM capabilities, assessment 

design, and computing concepts in computing education. 
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