
Using Benchmarking Infrastructure to Evaluate LLM Performance on CS

Concept Inventories: Challenges, Opportunities, and Critiques

MURTAZA ALI, University of Washington, USA

PRERNA RAO, University of Washington, USA

YIFAN MAI, Stanford University, USA

BENJAMIN XIE, Stanford University, USA

BACKGROUND AND CONTEXT. The pace of advancement of large language models (LLMs) motivates the use of existing infrastructure

to automate the evaluation of LLM performance on computing education tasks. Concept inventories are well suited for evaluation

because of their careful design and prior validity evidence.

OBJECTIVES. Our research explores the feasibility of using an automated benchmarking framework to evaluate computer science

(CS) concept inventories. We explore three primary objectives: evaluation of LLM performance on the SCS1 and BDSI concept

inventories; informal expert panel review of items which had variations between LLM and expected student performance; and

description of challenges with using benchmarking infrastructure as a methodological innovation.

METHOD. We used the Holistic Evaluation of Language Models (HELM) framework to evaluate the SCS1 and BDSI against 10

LLMS with zero-shot and few-shot in-context learning: GPT (3.5, 4.0), Claude (1.3, 2.0, 2.1), Llama (7B, 13B, 70B), Mistral v0.1 7B, and

Mixtral 8x7B. We used psychometric data from prior studies to measure knowledge levels for each LLM run. We then conducted an

informal expert review to qualitatively explore how question design, CS content knowledge, and LLM design may explain diferences

between LLM and expected student performances.

FINDINGS. Our quantitative analysis found that most LLM response patterns refected a below average introductory computing

student with the SCS1 and did not ft the psychometric 2PL model for the BDSI. Our qualitative analysis identifed that LLMs performed

well on code infll questions, but poorly on nested conditionals, runtime analysis, and longer questions. We also identifed several

methodological challenges related to item security, translation, the structure when using HELM.

IMPLICATIONS. We consider the feasibility of using automated benchmarking as a methodology to support more reproducible,

replicable, and rigorous investigations to understand the intersection of LLM capabilities, computing concepts, and assessment design.

We also consider connections between psychometric approaches and LLM evaluations to inform the design of computing assessments

that are more resilient to LLM advancements.

CCS Concepts: • Social and professional topics → Computing education; • Human-centered computing → Human computer

interaction (HCI).

Additional Key Words and Phrases: computing education, large language models, benchmarking, psychometrics, concept inventories

ACM Reference Format:
Murtaza Ali, Prerna Rao, Yifan Mai, and Benjamin Xie. 2024. Using Benchmarking Infrastructure to Evaluate LLM Performance on CS

Concept Inventories: Challenges, Opportunities, and Critiques. In ACM Conference on International Computing Education Research V.1

Authors’ addresses: Murtaza Ali, mali53@uw.edu, University of Washington, Human-Centered Design and Engineering, Seattle, WA, USA; Prerna Rao,

prernar@uw.edu, University of Washington, Human-Centered Design and Engineering, Seattle, WA, USA; Yifan Mai, maiyifan@stanford.edu, Stanford

University, Center for Research on Foundation Models, Stanford, CA, USA; Benjamin Xie, benjixie@stanford.edu, Stanford University, Institute for

Human-Centered Artifcial Intelligence, McCoy Family Center for Ethics in Society, Stanford, CA, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for proft or commercial advantage and that copies bear this notice and the full citation on the frst page. Copyrights for third-party

components of this work must be honored. For all other uses, contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0000-0002-2998-3165
HTTPS://ORCID.ORG/0009-0006-0229-7073
HTTPS://ORCID.ORG/0009-0004-7270-2607
HTTPS://ORCID.ORG/0000-0003-3275-992X
https://orcid.org/0000-0002-2998-3165
https://orcid.org/0009-0006-0229-7073
https://orcid.org/0009-0004-7270-2607
https://orcid.org/0000-0003-3275-992X
mailto:benjixie@stanford.edu
mailto:maiyifan@stanford.edu
mailto:prernar@uw.edu
mailto:mali53@uw.edu

2 Ali et al.

(ICER ’24 Vol. 1), August 13–15, 2024, Melbourne, VIC, Australia. ACM, New York, NY, USA, 26 pages. https://doi.org/10.1145/3632620.

3671097

1 INTRODUCTION: THE RAPIDLY EVOLVING LANDSCAPES OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) are advancing rapidly and have caught signifcant public attention [13, 71]. These

models have hundreds of billions of parameters and train on broad datasets to enable adaptability to a wide range of

downstream tasks, such as text and image generation [13]. These models also have several educational applications,

ranging from assisting with grading [85] to generating open-ended practice exercises [110]. Furthermore, since LLM

training data includes extensive code, researchers have also explored the utility of LLMs specifcally in computing

education [87].

Timely evaluations of new LLM capabilities on computing education tasks, such as performance on assessments [98]

and ability to generate code explanations [66, 93]), could inform the practice of computing education instructors and

researchers alike. However, the pace of advancement in LLM performance make them difcult to rigorously evaluate

through typical scholarly means. In the 100 days since OpenAI released its latest generation LLM, GPT-4 Turbo1, 29

diferent organizations released 35 new LLMs [99]. By contrast, computing education research publications typically

publish annually for conferences (e.g. ICER, SIGCSE, ITiCSE, Koli Calling) and quarterly for journals (e.g. TOCE, CSE).

Evaluations of LLM performance risk outpacing evaluations of their capabilities and afordances within computing

education contexts.

In response to the velocity of advancement and the broad adaptability of LLMs, Artifcial Intelligence (AI) researchers

have resorted to developing benchmarks to evaluate LLM performance. These benchmarks are standardized tasks

that attempt to measure LLM capabilities across a broad spectrum, including consideration of social biases [23, 79],

mathematical problem solving, [48], and medical exams [40]. Joint eforts to develop and evaluate benchmarks have

resulted in collaborative benchmarks such as the Beyond the Imitation Game (BIG-bench), which includes 204 tasks

developed by 450 authors from 132 institutions [9]. Task topics are diverse, drawing upon problems from linguistics,

social bias, math, software development, and beyond.

Automating certain evaluations of LLM capabilities could enable more capacity to conduct more open-ended and

human-centered evaluations. Echoing Baker [5], the goal of LLMs in computing education is not to use the most

efective LLMs, but to fnd efective ways to develop knowledgeable and successful (human) learners. Within computing

education research, this includes broadening participation in computing, preparing educators, developing quality

curricular materials and assessments, and scaling eforts [10]. We argue that we cannot, and should not, automate

evaluations of the impact of LLMs on these eforts. What we can do is automate some closed-ended evaluations (e.g.

LLM performance on an assessment) to encourage deeper, more open-ended analyses (e.g. impacts of LLM usage on

broadening participation) and thus support more rigorous overall evaluations of LLM performance. Within the context

of computing education, closed-ended evaluations could include LLM performance of concept-inventories, assessments

designed to determine whether a student has accurate working knowledge of a specifc set of computing concepts (e.g.

introductory computing knowledge [82] or data structures [86]).

This paper explores the feasibility of using an automated benchmarking framework, Holistic Evaluation of Foundation

Models (HELM) [61] to support more reproducible, replicable, and rigorous evaluations of LLM capabilities in computing

education. Reproducibility refers to the ability to achieve the same fndings as a prior study using existing data that

1
released 5 November 2023 [99]

Manuscript submitted to ACM

https://doi.org/10.1145/3632620.3671097
https://doi.org/10.1145/3632620.3671097

3 Using Benchmarking Infrastructure to Evaluate LLM Performance on CS Concept Inventories

prior study [103], and replication refers to following the design of a prior study with newly collected and analyzed data

to determine if a new study yields the same fndings as a prior study [103].

Prior work in CER include literature reviews of empirical studies, replication studies, and infrastructure to improve

reproducibility. In a systematic literature review of computing education research literature, Heckman et al. [38] found

that over 80% of reviewed papers included some form of empirical evaluation, with quantitative evaluation methods

being most frequently reported. Examples of prior replication studies in CER include investigating subgoal labeling

[77] and designing a new language-agnostic knowledge assessment [82] in CS1. Replication studies that fail to replicate

previous fndings are also useful (e.g. [58, 72]), as they can identify alternative explanations for prior fndings. To

support more reproducibility and replication in CER, prior work has explored pre-registering studies Brown et al. [14].

More reproducible and replicable empirical studies can result in knowledge building through meta-analyses [74] and

theory building [70, 80].

We focus on the performance of 10 LLMs on two introductory CS concept inventories: the SCS1, which measures

introductory computing (CS1) knowledge [82], and the BDSI [86], which measures knowledge of data structures. We

chose to evaluate concept inventories because they have strong validity evidence and likely were not used to previously

train LLMs, overcoming two common issues with existing benchmarks [60, 91, 115]. We compared LLM performance

with expected student performance by using psychometric properties reported from prior studies. This comparison

enabled us to identify unusual items, which we defne as items for which LLM and expected student performance

deviated (e.g., LLMs performing unusually well on difcult questions). We then conducted a qualitative review with

computing education, LLM, and assessment design experts to understand how LLM design, item design, and computing

concepts may afect LLM performance when compared to expected student performance. By doing so, we explored the

following research questions:

(1) How do LLMs perform on the SCS1 and BDSI concept inventories?
(2) How do AI, computing education, and assessment experts interpret deviations in LLM capabilities

from expected student performance?
(3) What are challenges with using benchmarking infrastructure to automatically evaluate LLMs?

In this paper, we contribute a feasibility study into the use of automated benchmarking infrastructure as a method-

ological innovation for computing education. This feasibility study includes 1) a mixed-methods empirical evaluation to

evaluate the performance of 10 LLMs on two CS concept inventories in comparison to expected student performance and

2) a description of methodological challenges in leveraging benchmarking infrastructure to automate LLM evaluations

for computing education research.

2 RELATED WORK

In this section, we describe related work pertaining to the opportunities and challenges with evaluating LLMs with

benchmarks. We then discuss computing education research on concept inventories (CIs) and their validity evidence.

Collectively, this prior work situates our study in using HELM [61] as automated benchmarking infrastructure to

evaluate LLM performance on two concept inventories (SCS1 [82] and BDSI [86]).

2.1 Benchmarking Large Language Models (in Computing Education Research)

A language model (LM) aims to model the generative likelihood of word sequences—to predict the probability that

one word follows another in a stream of text [114]. LM research has advanced signifcantly over the years, with the

Manuscript submitted to ACM

4 Ali et al.

following progression: 1) statistical models (SLMs) [46], 2) neural language models (NLMs) [8], 3) pre-trained language

models (PLMs) [59], and, most recently, 4) large language models (LLMs) [114]. These models, broadly speaking, are

often considered to fall under the broad class of foundation models, an umbrella term for any model trained on broad

data and capable of being fne tuned for specifc tasks [13].

From a technical standpoint, LLMs are simply very large PLMs; this upsizing is achieved by scaling the model or the

data size and results in better performance on several tasks. One such improvement is the chief source of the current

fascination with LLMs across domains: LLMs enable applications which possess a remarkable ability to carry on realistic

dialogue with humans [114]. The most popular example of such an application is ChatGPT [109].

LLMs are often evaluated via comparison with existing benchmarks. However, there is still the question of how LLMs

are actually evaluated (i.e., what measures/metrics are used to evaluate them). In their survey on evaluating LLMs,

Chang et al. [16] note that evaluation can be split into two categories: automatic evaluation and human evaluation.

Automatic evaluation is more efcient and standardized, generally focused on measuring LLM performance via the

following four metrics:

(1) Accuracy: How well a model performs a predefned task, as measured by autmated metrics such as F1 score or

Exact Match.

(2) Calibration: The level of agreement between the model’s confdence level and its actual accuracy.

(3) Fairness: A measure of whether the model is consistent across various group attributes.

(4) Robustness: How well a model performs against challenging inputs and adversarial attacks. In some con-

texts, including within HELM, robustness can also include a model’s ability to perform well even with input

transformations and/or perturbations.

Human evaluation is more time consuming and subjective, but can lead to more reliable evaluations for tasks that

are hard to standardize, such as those that involve open generation [84]. Chang et al. [16] outline the following six

human assessment criteria for LLM evaluation:

(1) Accuracy: In this case, accuracy refers to the precision and correctness of the output as judged by human experts,

as opposed to calculation via automated metrics.

(2) Relevance: The appropriateness and signifcance of the output.

(3) Fluency: How smoothly the model’s output reads, including syntax, semantics, and tone/style.

(4) Transparency: How well the model explains its reasoning.

(5) Safety: The model’s ability to refrain from producing harmful or inappropriate content.

(6) Human alignment: How well the model produces output that is in line with a human’s expectations and values.

This criterion seeks to ensure, at a high level, positive interactions with human users.

An alternative dimension on which LLM evaluation can be considered is open-ended vs. closed-ended evaluations.

Open-ended evaluations consider an LLM’s profciency at tasks that do not have a single correct answer, such as writing

open-ended story content or engaging in critical reasoning. Closed-ended evaluations involve tasks that can be graded

without judgment. A helpful analogy here is to consider the diference between grading a multiple-choice exam (closed

ended) and an argumentative essay (open ended); both serve their purposes, but are fundamentally diferent.

Within CS Education LLM research, diferent types of evaluations have been used for diferent research goals.

Researchers have engaged in open-ended analyses to evaluate automatically generated programming exercises [22],

context-aware error explanations [92, 100], code explanations [94], and student code feedback [6]. For tasks that simply

involve evaluating GPT’s performance on an assessment [97] (especially a multiple-choice one), researchers often use a
Manuscript submitted to ACM

5 Using Benchmarking Infrastructure to Evaluate LLM Performance on CS Concept Inventories

closed-ended evaluation followed by a deeper, open-ended analysis [30, 96]. We advocate for this dual approach in

our work. Stopping at a closed-ended, automatic evaluation for assessment instruments does not provide insight into

why an LLM performs the way that it does, and it misses the opportunity to learn about how educators might design

assessment materials that are more resilient to accurate completion by LLMs. We argue in favor of moving from only a

closed-ended, automatic evaluation of assessment instruments to one that also includes open-ended, human evaluation,

and in our paper we demonstrate one method of doing so.

2.1.1 Critiques of Benchmarking. We frame critiques of current automated benchmarking practices from the perspec-

tives of machine learning, psychometrics, and value tensions.

A machine learning concern with benchmarks relates to benchmark leakage. This term generally refer to when a LLM

trains on data that we want to evaluate it against, such as training on benchmarks. This violates a fundamental idea of

machine learning, that a model should never train on the test set. Benchmark leakage refers to data or tasks used for

evaluation or test sets that are used for model training [60, 91, 115]. Benchmark leakage includes test data contamination

in various forms: the inclusion of test data guidelines (e.g. information about a concept inventory), examples (e.g.

concept inventory questions without solutions), and/or labels/annotations (e.g. concept inventory questions annotated

with solutions) in the pre-training data [60, 115]. Benchmark leakage may also include task contamination, the inclusion

of task training examples in pre-training data, such as examples of concept inventory question structures [60]. This

may invalidate zero or few-shot in-context learning approaches, but may also be acceptable when the structure of a

task is not part of the evaluation (e.g. wanting an LLM to train on the structure of multiple choice questions to evaluate

computing knowledge using multiple choice questions) [24]. Recommendations to address benchmark leakage include

benchmarks that refect broader capabilities, data decontamination checking by LLM developers, disclosure of training

datasets, and more diverse sets of test prompts for benchmark maintainers [60, 91, 115]. However, the inclusion of

benchmarks in training data for LLMs is an ongoing concern with their continued use.

A psychometrics-related concern with benchmarks involves validity. There are multiple perspectives of validity

according to educational statistics and psychometric literature [51, 75, 76]. A common framing of validity defnes it

as “an overall evaluative judgment of the degree to which empirical evidence and theoretical rationales support the

adequacy and appropriateness of interpretations and actions on the basis of test scores or other modes of assessment”

[75, 76]. Related to benchmarking, validity is an evaluative summary of evidence for how people can interpret and use

benchmark results [51, 76]. Raji et al. [89] has argued that benchmarks lack construct validity [75, 76], evidence that

LLM performance on benchmarks refects processes, strategies, and knowledge of a latent construct (e.g. computing

knowledge). A particular concern relates to construct-irrelevant variance [76], where a benchmark is too broad and as a

result, score variance is associated with confounding constructs or other properties irrelevant to the intended construct.

The broad applicability of LLMs makes it difcult to consider the validity of interpreting and using benchmark results, in

part because latent constructs of interest (e.g. “common tasks” [89], bias, programming knowledge) are underspecifed

and often context dependent. For example, benchmarks to evaluate gender bias in LLMs (e.g. [35, 52, 83]) tend to focus

on binary genders in relation to occupational stereotypes (e.g. how stereotypes often associate doctors as being men and

nurses as being women). This consideration of only two genders within occupational contexts is largely because of data

availability [16, 52]. However, gender is a fuid social construct that can be context dependent (e.g. a nonbinary person

coming out to close friends, but not to workplace colleagues or school classmates) [31]. Therefore, construct-irrelevant

variance may occur when considering gender bias in LLM outputs beyond occupational contexts (e.g. in educational or

social contexts) and when considering more than two genders.

Manuscript submitted to ACM

6 Ali et al.

An ethical concern with benchmarks relates to the values embedded into designing benchmarks. Dehghani et al. [21]

identifed four biases that impact LLM researchers benchmarks: task selection bias (dependence of model performance on

tasks and datasets selected for benchmarks), community bias (efects of community pressures to develop and emphasize

certain benchmarks), statefulness of benchmarking (decisions made in developing new models are informed by the

errors and successes of previous models on the same benchmarks, and rigging (selecting evaluation methods and metrics

that best ft given model and resource constraints). Blili-Hamelin and Hancox-Li [11] drew connections between ethical

tensions of LLM benchmarking and IQ tests [28]. These ethical concerns related to task-selection, narrowly defned

standards for construct validity, and positive feedback loops between benchmarks and types model development.

2.1.2 LLMs in Computing Education Research. LLMs have swiftly been incorporated into computing education research

within the last year, with researchers exploring their potential for various tasks including enhancing error messages [56],

generating code [81], generating code explanations [57, 65], and simulating students using LLMs [1]. Some researchers

have even explored the potential of LLMs to directly generate advanced educational materials, such as with Agrawal

et al. [2]’s CyberGen system.

In their 2023 report on the expanding use of generative AI in computing education research, Prather et al. [87]

identifed 71 articles related to the topic, with over three-fourths published in 2023 itself. Papers centered around 5

primary topics: 1) assessing the performance of LLMs, 2) position papers/surveys/interviews, 3) interactions between

programmers and LLMs, 4) use of LLMs to review student work, and 5) use of LLMs to generate educational resources

and materials. In their report, the authors additionally build upon existing research by benchmarking several generative

AI models on a group of computing education data sets.

Specifcally with respect to benchmarking in computing education within generative AI, researchers published a

wealth of impactful fndings in 2023 and 2024, attempting to keep up with the advancements of language models and

their efect on performance in various areas. Mahon et al. [68] investigated GPT-4’s performance on standardized

national exams for high school computer science in Ireland and the UK, fnding that GPT-4 performed quite well overall,

but struggled with questions involving images or symbols. Savelka et al. [96] found a strong rate of improvement

when benchmarking GPT-4 (as compared with previous generations of the model) on three Python courses containing

everything from simple multiple-choice questions to involved free-coding questions spanning multiple fles. Prather

et al. [87] also report on benchmarking as part of their above paper, focusing on the task of generating a solution to a

programming problem and reviewing a wide range of available data sets to categorize the content they contained [87].

Finally, they replicate one of the frst studies on LLMs in computing education [30] using GPT-4, GPT-3.5 Turbo, and

CoPilot on the original data, as well as on two previously untested data sets, the Automated Programming Progress

Standard (APPS) [39] and FalconCode [20]. Like [96], they found signifcant improvements with newer models while

also reporting on challenges with LLMs parsing question formats and adding additional output which was not specifed

in the problem description.

Prather et al. [87] also noted two challenges to benchmarking that are particularly relevant to our work: 1) It can be

difcult to meaningfully benchmark LLMs because of the speed at which new, more capable models are released, and 2)

because papers often use a wide variety of prompts and evaluation approaches without delving into the details, it can

be difcult to validate results. Our methodology addresses the frst concern via our use of HELM: Because HELM is

consistently updated with the latest LLMs, integrating CIs into the framework will allow new model benchmarks to be

computed more efciently. To provide the opportunity for replication as well as encourage further work, we describe

our evaluation methodology in great detail in Section 3.

Manuscript submitted to ACM

7 Using Benchmarking Infrastructure to Evaluate LLM Performance on CS Concept Inventories

2.2 Concept Inventories

A concept inventory (CI) is a standardized assessment used to measure student understanding of core concepts in a

discipline, designed specifcally to elicit information about misconceptions [101]. CIs serve to identify areas of conceptual

difculty prior to instruction and evaluate the impact of pedagogical interventions in students’ conceptual understanding

[63]. Concept inventories are typically involve multiple choice items/questions with one correct solution. All other

solutions are incorrect and collectively referred to as distractors. A well-designed CI item has distractors which each

refect a common misconception about a concept; thus, based on the answers students select, instructors can identify

student misconceptions about the material [63].

Concept inventories date back to 1992, with the advent of the Force Concept Inventory (FCI, [44]). At the time,

physics students held several misconceptions about Newtonian force which physics courses were not correcting [36]. In

the years following its release, the FCI led to revolutionary changes in physics education (e.g. peer instruction [18]) and

thus precipitated the adoption of CIs across STEM felds [7, 26, 64, 78].CI work reached computer education nearly two

decades later, starting with introductory work identifying misconceptions [33, 50]. This preliminary work led to the

publication of the frst two empirically validated CIs in computer science: the Digital Logic Concept Inventory (DLCI)

and the Foundational Computer Science 1 Assessment (FCS1) [42, 102].

With this foundation laid, CI work in computer science slowly began to expand. The frst literature review studying

such work was conducted in 2014 by Taylor et al. [101], who documented several important points detailing the

development of research work:

• Though more researchers were beginning to explore the space, progress was still limited in 2014. Taylor et al.

recorded 6 total CIs in computer science, and among these only the FCS1 and DLCI were fully developed and

validated.

• Misconceptions were common among introductory computer science students, and so CI research is important

and worth expanding.

• Taylor et al. noted several challenges in building CIs unique to computer science, revolving around the fact that

computer science is a young and fuid feld (especially in comparison to a natural science such as Newtonian

physics) with variations in how it is taught. For example, many courses teach the same concepts in diferent

programming languages. Do these warrant distinct CIs? Are important, more “overarching” skills in computer

science–such as debugging and program design–appropriate for inclusion in a CI? Their documentation of these

challenges went on to explicitly and implicitly infuence future work in this space.

In the years following Taylor et al.’s review, the speed of computer science CI research increased substantially. In

2023, Ali et al. published a systematic review with the following updated fndings [3]:

• As of 2023, there were 33 total computer science CIs in existence, 12 of them validated.

• Taylor et al.’s prediction of potential challenges proved prescient. Though researchers rarely set out with the

intention of addressing these challenges, they nearly always presented themselves, and as such, progress toward

potential solutions was made. For instance, one novel solution to varied programming languages was to develop

a method for transitioning a CI from one language to another [15].

• Research also expanded beyond simply building new CIs using established methods, with some researchers

actively exploring novel methodologies for CI development itself [90, 107].

CI work in computing education continues to expand today. By incorporating CIs as benchmarks/scenarios in HELM,

we hope to make evaluation of future LLM capabilities more consistent with evaluations on other LLMs and timely.
Manuscript submitted to ACM

8 Ali et al.

2.2.1 Validity Evidence and Psychometrics. Item Response Theory (IRT) methodologies are foundational to psycho-

metrics [19]. IRT provides more sample-agnostic statistics which estimate learner knowledge and question properties

separately using falsifable models. IRT enables the estimation of question-level and test-level parameters, as well as

test-takers’ knowledge levels. This provides estimates of the difculty and discrimination of each question for learners

of diferent knowledge levels. It does this by estimating the correspondence between unobserved latent variables (e.g.

learners’ computing knowledge, difculty of questions) and observable evidence of knowledge (e.g., people’s responses

to questions). By ftting response data to a model (e.g. logistic model), we can estimate question parameters (e.g.

difculty) with fewer assumptions about the characteristics of the sample. We can also make predictive statements about

learner performance based on knowledge level. By doing so, estimates of test-taker, item, and assessment properties

generalize beyond the specifc sample of test-takers.

A key principle of IRT is placing test-takers and questions on the same normally distributed, typically unidimensional

continuum. The center of 0 represents the knowledge level for the average test-taker of the population. An average test-

taker would have a 50% chance of getting an average question correct. Therefore, if a test-taker’s predicted knowledge

level is greater than the difculty of the question, then they are more likely to get the question correct. This continuum

helps model the relationship between a learner’s latent knowledge level and their observed item performance as a

monotonically increasing function.

In this paper, we focus in particular on the 2 Parameter Logistic (2PL) model because prior work ft responses

to the SCS1 [112] and BDSI [86] to the 2PL model. For the 2PL model, each item has two parameters: difculty and

discrimination. The estimated difculty of a question is the knowledge level at which a test-taker has an equal chance

(50%) of answering a question correctly and incorrectly. Discrimination is how well a question distinguishes between

test-takers of varying knowledge levels. A high discrimination value is desireable because it indicates that the probability

of a test-taker answering correctly changes signifcantly based on their knowledge level. With discrimination, we can

see if questions at the same difculty level provide more or less information about test-takers’ knowledge.

3 METHOD

To answer our research questions, we automatically evaluated the concept inventories with HELM. We then conducted

expert review [73] on items with LLM performance deviating from expected student performance. We describe our

methodology for selecting CIs and evaluating CIs with HELM. We then describe our mixed-methods analysis involving

modeling LLM performance with IRT and reviewing unusual items with AI, computing education, and psychometric

experts.

3.1 Concept Inventory Selection & Item Translation

Authors of CIs generally do not make them publicly available, as widespread access to the test items would interfere

with the instrument’s validity. If a student saw the questions beforehand, they could simply memorize the answers, and

the CI would lose its ability to ascertain the student’s misconceptions. In order to obtain the CIs of interest, we reached

out to each CI’s author team independently.

The full list of CIs we attempted to obtain was drawn from the validated list of CIs from Ali et al. [3], along with

two additional CIs on Cybersecurity [41] and the Rust Programming Language [17] which were validated after the

publication of Ali et al. [3]. We successfully obtained seven CIs, including two and omitting fve.

The two CIs we included in this study were the Second Computer Science 1 Assessment (SCS1, [82]) and the Basic

Data Structure Inventory (BDSI, [86]). The SCS1, properly known as the Second CS1 Assessment, is a CI developed in
Manuscript submitted to ACM

9 Using Benchmarking Infrastructure to Evaluate LLM Performance on CS Concept Inventories

2016 which focuses introductory computer science concepts [82]. Formally, the SCS1 is a replicated CI, isomorphic to

the earlier FCS1, or Foundational CS1 Assessment [102]. Parker et al. [82] developed the SCS1 to enable free use by a

broad research community, arguing that replication of assessments is important to addressing inbuilt issues and adding

extensions. The SCS1 is an assessment instrument which has validity evidence from multiple independent studies

[112]. Conceptually, it is suited for computer science students who have completed an introductory programming

course. Additionally, it makes use of a pseudocode language to enable accessibility to students with backgrounds in

diferent programming languages. The BDSI, or Basic Data Structures Inventory, was released in 2019 and makes use of

an extended version of the SCS1 pseudocode language to assess students’ profciency in data structures [86]. It tests

concepts at a level above the SCS1, and it is suited for students who have completed a CS2 course in computer science,

generally connoting a course that introduces students to data structures [43].

We excluded the fve other CIs for the reasons stated below:

• Basic Recursion CI [37]: Unlike most CIs, the Basic Recursion CI consists of completely open-ended questions.

This presented difculties in automatically checking for correctness within HELM.

• BST and Hash Tables CI [53]: This CI consists of several images and graph structures; determining how to

best represent these to LLMs that do not support images directly will require further work. Our work provides

preliminary insight into this, as the BDSI also included graphs, but to a much lesser extent.

• CCI (Cybersecurity CI) [41]: The CI authors did not consent to inclusion of instrument because of similar ongoing

research.

• First-Year Computer Science CI [104]: This CI is currently only available in German, which is not as comprehen-

sible as English to the majority of LLMs; this would have confounded the results.

• MG-CSCI (Middle-Grades Computer Science CI) [88]: This CI consists primarily of questions in the blocks-based

programming language Snap!, represented as images. Thus, we faced a similar issue as with the BST and Hash

Tables CI in representing the questions.

3.2 Integrating CIs into HELM

To systematically evaluate LLM capabilities to answer the SCS1 and BDSI concept inventories, we used the automated

benchmarking infrastructure provided by the Holistic Evaluation of Language Models (HELM). HELM is an open-source

LLM benchmarking framework built by Stanford’s Center for Research on Foundation Models (CRFM). HELM provides

benchmarking infrastructure for nearly 150 LLMs and includes over 100 benchmarks, and provides researchers with the

ability to add new models and benchmarks as work progresses [61]. 2.

To add a benchmark to HELM, one must implement a HELM Scenario subclass in Python, which defnes how data is

imported, parsed, and converted into HELM Instance objects. A single Instance object represents a CI question and its

associated answer choices. For our work, we implemented a new Scenario within HELM, CIMCQAScenario, which

handles the conversion of a JSON fle representing a CI into a list of Instances that can be passed into HELM’s core

program. This infrastructure enabled consistent prompt formatting for single-option multiple-choice questions across

multiple benchmarks.

Because the CIs we worked with were initially only available as PDF or Microsoft Word fles of questions and answers,

we structured them into JSON fles as a preprocessing step. In doing so, we made a number of decisions concerning

2
Number of LLMs, scenarios, metrics as of March 2024. https://crfm.stanford.edu/helm/classic/latest/

Manuscript submitted to ACM

https://crfm.stanford.edu/helm/classic/latest/

10 Ali et al.

how to represent code indentations, graph structures, tables, and other aspects of the CIs that did not have immediately

clear text representations. We made the following key decisions:

• Line breaks in code are indicated with a newline character.

• One level of indentation is represented via four space characters.

• Questions/answers in table format are represented by listing each row individually, with the column title

preceding each individual entry.

• Any tree diagrams in the questions are represented with textual descriptions.

• Questions with multiple correct answers (specifcally, two questions on the BDSI) are excluded, as HELM does

not currently support this answer format.

A more detailed document outlining the design decisions made for each CI is available as supplemental material to

this paper.

We attempted to prevent LLM creators from using CIs to train future models but largely failed to do so. The only

LLM developer that provided the capabilities to restrict data usage at the time of this study was OpenAI. However, this

required an Enterprise account, which we did not have. We did avoid publicly sharing the CI questions and answers

as a published benchmark. This mitigated the risk of test data leakage (CI questions and solutions cannot be scraped

from the web), but did go against typical practices of publishing benchmarks for others to interrogate and use [9]. We

obtained verifcation from SCS1 and BDSI maintainers that we had permission to use their CIs prior to running any CI

questions through an LLM.

Finally, in order to enable few-shot runs of the model, we developed a set of in-context learning examples [24]: 5 for

the SCS1 and 3 for the BDSI. These examples are not used to fne tune models for better performance; rather, they assist

HELM in familiarizing itself with the correct input-output structure for evaluation items. This helps reduce situations

where an LLM response is incorrectly evaluated due to a minor variation in the desired output format.

We chose to evaluate the following 10 LLMs created by four organizations:

(1) Anthropic Claude v1.3, Anthropic Claude 2.0, and Anthropic Claude 2.1 (by Anthropic)

(2) GPT-3.5 Turbo (0613) and GPT-4 (0613) (by OpenAI)

(3) Llama 2 (7B), Llama 2 (13B), and Llama 2 (70B) (by Meta)

(4) Mistral v0.1 (7B) and Mixtral (8x7B 32K seqlen) (by Mistral AI)

These models refect a subset of models from HELM Lite [62] that were available at the time.

3.3 Analysis

3.3.1 Qantitative Analysis: Psychometric Properties to Compare LLM and Student Performance. We used difculty and

discrimination parameters defned in prior work ([86, 112]) to ft the SCS1 and BDSI to separate 2PL models. We then

checked whether LLM response patterns were consistent with each 2PL model. We checked the person-ft statistic �� , a

standardization of the test-taker log likelihood function � to address the interaction of ��(�) and � [19, 25, 45]. �� is

standardized, so a value of 0 denotes a perfectly expected or typical response pattern. Values above 2.0 could indicate

overftting (unexpectedly good ft) and below -2.0 could indicate noisy or unexpectedly poor ftting [45]. If the person-ft

statistic was acceptable (|�� | < 2.0), then we reported the latent knowledge level � of each LLM run, efectively treating

each one as independent test-takers and answering our frst research question. � is normalized, with 0 denoting an

“average” test-taker, > 0 denoting an above average test-taker, and < 0 denoting a below average test-taker [19].

Manuscript submitted to ACM

11 Using Benchmarking Infrastructure to Evaluate LLM Performance on CS Concept Inventories

3.3.2 Qalitative Analysis: Informal Expert Panel Review. We identifed unusual items in which LLM performance on

these items deviated from expected student performance. To calculate expected student performance, we used the

difculty parameter (�) from the 2PL model for each item. � is efectively a z-score [19], with the proportion of the

normal curve above that value representing the proportion of students with a ≥ 50% expected probability of getting the

item correct. We then compared that percentage to the proportion of LLMs that got an item correct.

We considered two kinds of unusual items: those with high difculty and those with low difculty. Unusual high

difculty items are those with the greatest difculty that had a greater proportion of LLM runs getting them correct

when compared to the expected proportion of students. Therefore, unusual high difculty items are those in which LLMs

performed unexpectedly well. Unusual low difculty items are those with the lowest difculty in which the proportion

of LLM runs getting them correct is less than the expected proportion of students getting it correct. Therefore, unusual

low difculty items are those in which LLMs performed unexpectedly poorly. We considered at most three high difculty

and low difculty items that fulflled this criteria.

Three authors participated in reviewing unusual items. These authors had experience in computing education

research (three authors had collectively published over 12 papers to computing education research venues), teaching

higher education computing courses (two authors had served as instructors; all four had experience as teaching

assistants), psychometrics (one author had previously published multiple papers related to educational statistics and

assessment design, and one author had developed materials for machine learning courses taught internationally), and

LLMs (one author had published multiple papers on benchmarking and had industry experience developing deep

learning algorithms).

The goal of this informal expert panel review [54] was to understand how LLM design, assessment design, and/or

computing knowledge may explain deviations in LLM and expected test-taker performances. For each unusual question,

experts considered whether the original question design, computing concept it assessed, or an aspect of the LLM design

may have resulted in performance that difered from the expected question difculty. We also considered whether the

prompt structure could have been a confound. A previous psychometric evaluation of the SCS1 [112] included item

trace plots as supplementary material [111]. These plots show the expected probability of selecting each multiple choice

option for learners of varying knowledge levels. We used these plots to determine whether trends in incorrect LLM

responses aligned with common student misconceptions.

4 RESULTS

4.1 RQ1: LLM Performance

Table 1 shows the results of person-ft statistics, with it and Figure 1 showing the knowledge level estimates for each

LLM run with an acceptable ft. For the SCS1, we found that the 2PL model poorly ft the response patterns for Anthropic

Claude v1.3 (zero and few shot), Llama 2 (7B) (zero and few shot), and Llama 2 (70B) (zero shot). The remaining

models also had response patterns that refected below average CS1 students, ranging from Llama 2 (7B) with few shot

prompting (� = −2.52 ± 0.58) to GPT-4 (0613) with zero shot prompting (� = −0.33 ± 0.22).

Only fve of the 20 LLM runs had responses that ft the 2PL model for the BDSI, with all other models being too

noisy and poor of fts (�� < −2.0). The LLMs with acceptable person-ft for the BDSI were all three Anthropic Claude

models with few shot prompting and GPT-4 (0613) with zero and few shot prompting. These fve instances produced

responses that refected CS2 students with data structures knowledge ranging from approximately average (GPT-4

(0613) with zero shot, � = 0.12 ± 0.44 to above average (Anthropic Claude 2.0 with few shot, � = 0.85 ± 0.51).

Manuscript submitted to ACM

12 Ali et al.

Table 1. Person fit statistics and knowledge estimates for LLMs with diferent prompting for the SCS1 and BDSI concept inventories.
�� is a person-fit statistic, with ** denoting unacceptable fit (|�� | > 2.0). � and standard error denote knowledge estimates of each
LLM with an acceptable person fit.

model name prompting
SCS1
��

(24 questions)
� std. error

BDSI
��

(11 questions)
� std. error

claude-v1.3
claude-v1.3
claude-2.0
claude-2.0
claude-2.1
claude-2.1
gpt-3.5-turbo-0613
gpt-3.5-turbo-0613
gpt-4-0613
gpt-4-0613
llama-2-7b
llama-2-7b
llama-2-13b
llama-2-13b
llama-2-70b
llama-2-70b
mistral-7b-v0.1
mistral-7b-v0.1
mixtral-8x7b-32kseqlen
mixtral-8x7b-32kseqlen

zero shot
few shot
zero shot
few shot
zero shot
few shot
zero shot
few shot
zero shot
few shot
zero shot
few shot
zero shot
few shot
zero shot
few shot
zero shot
few shot
zero shot
few shot

-2.31**
-2.79**
-1.01
-1.13
-0.99
-0.36
-1.06
-0.26
1.80
0.62
0.55

-2.95**
-2.34**
-0.71
-3.25**
-0.80
-0.42
-0.58
-1.34
-1.82

-

-

-1.06
-0.91
-1.01
-0.72
-1.45
-0.81
-0.33
-0.34
-2.52
-

-

-0.91
-

-1.11
-1.16
-1.08
-0.80
-0.61

-

-

0.32
0.30
0.31
0.27
0.39
0.28
0.22
0.22
0.58
-

-

0.30
-

0.33
0.34
0.33
0.28
0.25

-4.05**
-0.76
-2.14**
-1.59
-2.65**
-0.31
-2.26**
-2.26**
-0.46
-0.31
-5.12**
-5.12**
-4.35**
-4.91**
-2.70**
-3.93**
-4.50**
-2.26**
-3.09**
-2.7**

-

0.66
-

0.46
-

0.85
-

-

0.12
0.13
-

-

-

-

-

-

-

-

-

-

-

0.48
-

0.46
-

0.51
-

-

0.44
0.44
-

-

-

-

-

-

-

-

-

-

Table 2. Number and percentage of invalid responses for LLM runs with zero and few shot in-context learning for each CI. Percentages
calculated from 110 responses for each learning context for BDSI, and 240 responses for the SCS1.

zero shot few shot
BDSI 20 (18%) 0 (0%)
SCS1 46 (19%) 4 (2%)

Four runs produced responses that ft the 2PL models for both concept inventories: Anthropic Claude 2.0 and

Anthropic Claude 2.1with few shot learning and GPT-4 (0613) with zero and few shot learning. In all four runs, response

patterns for the SCS1 refected below average CS1 knowledge (� < 0) but approximately average to above average

knowledge of data structures (� ≥ 0), typically considered a more advanced CS2 concept.

4.1.1 Validity Check: Number of Invalid Responses. LLM runs could still output invalid responses (e.g. a new line or

word), which HELM would score as incorrect. We therefore attempted to correct for this using few shot in-context

learning, as described in section 3.2.

Table 2 shows the frequency of invalid responses outputted from zero shot and few shot learning runs for each

concept inventory. With zero-shot learning, we see that about 1 in 5 outputs are invalid. However, incorporating

examples for few-shot learning resulted in no invalid responses for the BDSI and only 2% invalid responses for the SCS1

across all 10 LLMs. This suggests that for LLM runs for few-shot learning a valid answer is almost always outputted.

Manuscript submitted to ACM

13 Using Benchmarking Infrastructure to Evaluate LLM Performance on CS Concept Inventories

Fig. 1. Knowledge Estimates of LLM runs based on the the 2PL models for the SCS1 and BDS1 concept inventories. Models with
unacceptable fit (|�� | > 2.0) are noted in box on right and not ploted.

4.2 RQ2: Informal Expert Panel Review

To answer our second research question and identify potential explanations for deviations in LLM and expected student

performance, we conducted an informal expert panel review with three authors, as described in Section 3.3.2. We

Manuscript submitted to ACM

14 Ali et al.

Table 3. Qestions from the SCS1 and BDSI that we included in the expert panel review. Unusual items with high dificulty denote
that LLMs performed beter than expected student performance. Unusual items with low dificulty denote that LLMs performed
worse than expected student performance. ** denotes that we designed a training item for in-context based on that item.

SCS1 BDSI
High difculty items which
LLMs performed well on
Low difculty items which
LLMs performed poorly on

Q15**, 7**, 26**

3, 19

7**

4, 3**, 8

identifed nine unusual items to include in our informal expert panel review, as shown in Table 3. In this section, we

note key trends we identifed 3.

For the expert panel review, we considered the information relating to item design (learning objective/concept,

question type, number of responses, “select one” or “select all that apply,” whether item includes code or images, correct

answer, item and all responses), psychometric properties (difculty and discrimination parameters from 2PL model, item

trace plots for SCS1 items only), and LLM-related information (number of tokens in input prompt, whether training

example was based on item, LLM run responses and correctness).

4.2.1 LLMs performed well on code-infill, poorly on nested conditionals. All three unusual high difculty items for the

SCS1 (Q15, 7, 26) were code infll/editing questions which provided a short code segment and required test-takers to

fll in two or three gaps in the code with the correct code segments. They assessed the concepts of function return

operators (Q15), while loops (Q7), and logical operators (Q26). Only 1-4% of CS1 students would be expected to get each

question correct according to the extremely high item difculties (� = 1.77 − 3.11). However 20–45% of LLM runs got

these questions correct. One potential explanation is that code infll/editing questions are a particular emphasis in LLM

design [34], as evidenced by how GPT-4 (0613) and Llama 2 (7B) with few-shot learning correctly answered all three

of these items. Another potential explanation is in how the question structure itself may have implicitly prompted

the LLMs to answer these questions as a coding expert, such as how a prompt beginning with “you are an expert

programmer” compared to “you are a novice programmer” can result in diferent outputs[106].

LLMs performed poorly on a low difculty SCS1 item involving nested conditionals (SCS1 Q19). This item was

relatively difculty (� = 0.74), with an expected 23% of CS1 students getting the item correct. LLMs did worse than this,

with only 15% (3/20) of LLM runs getting this question correct: GPT-3.5 Turbo (0613) with few shot learning, GPT-4

(0613) with zero-shot learning, and Mistral v0.1 (7B) with zero-shot learning. Interestingly, both GPT-4 (0613) and Mistral

v0.1 (7B) selected the correct response with zero-shot learning, but diferent incorrect responses with few-shot learning.

We noticed the same distractor selected by 60% (12/20) of LLM runs, including three of the four most advanced models

in their respective families with few shot learning: Anthropic Claude 2.1, Llama 2 (70B), and Mixtral (8x7B 32K seqlen).

This distractor option refected the erroneous execution of the outermost else statement despite the corresponding

if block already being run. The item trace plot showed that this distractor was never the most commonly selected

response option for CS1 students of any knowledge level. Therefore, the LLMs runs clustered towards a distractor that

refected a misconception that CS1 students did not often demonstrate.

3
To maintain item security, we will not show actual items and will avoid naming correct and incorrect responses. We will mention exact question
numbers to support knowledge building about these concept inventories across publications. This reporting practice is consistent with prior work (e.g.
[41, 82, 86, 112])

Manuscript submitted to ACM

15 Using Benchmarking Infrastructure to Evaluate LLM Performance on CS Concept Inventories

4.2.2 LLMs clustering towards same distractors. The response pattern for the unusual low difculty item SCS1 Q3 was

one that aligned closely with student responses. This question asked test-takers to trace code with a while loop and

select the correct output from fve options. Based on the item difculty (� = 0.27), we would expect 39% of CS1 students

to get this item correct. Only 25% (5/20) of scenarios outputted the correct response. Comparing LLM responses to

the item trace plot revealed that most LLM runs (11/20) outputted the same distractor as the most commonly selected

response amongst CS1 students with below average knowledge. These runs were all of smaller/older LLMs (Anthropic

Claude v1.3, GPT-3.5 Turbo (0613), Mistral v0.1 (7B) with zero and few shot; Anthropic Claude 2.0 and Llama 2 (7B) with

few shot; Llama 2 (13B) with zero shot) with the exception of Llama 2 (70B) with few shot. Only the most advanced

models got the correct answer (Anthropic Claude 2.0 and GPT-4 (0613) with zero and few shot, Mixtral (8x7B 32K

seqlen) with few shot). This pattern of LLM run outputs closely refected expected CS1 student performance, with

smaller LLMs selecting the same distractor as less knowledgeable CS1 students, and larger LLMs selecting the correct

answer.

For BDSI Q4 (unusual low difculty item), LLMs clustered towards a certain distractor that refected the run time of

typical mapping data structures. This item asked test-takers to consider the performance of implementing key-value

interface with a linked list. This item was very easy (� = −2.71), with over 99% of CS2 students expected to get it correct.

However, only 50% of LLM runs the correct answer (include GPT-4 (0613) and Llama 2 (70B) for both zero and few shot

and Anthropic Claude 2.1 with zero shot), with 25% selecting the same distractor (including Anthropic Claude 2.1 with

few shot learning and Mixtral (8x7B 32K seqlen) with zero and few shot learning). That distractor refected constant

time efciency. LLMs may have selected that distractor because the question described a mapping-like structure (like a

hashmap), which typically have constant time lookup.

BDSI Q3 (unusual low difculty item) also resulted in LLM runs clustering towards the same distractor with no

clear explanation. We considered this question as requiring more creative problem solving because it asked students

to identify the best experiment to determine whether a linked list was singly-linked or doubly-linked. It was a very

easy item (� = −1.38), with an expected 92% of CS2 students getting it correct. While Llama 2 (70B) and Mixtral (8x7B

32K seqlen) with zero-shot learning were the only two (10%) runs to output the correct response, the same two LLMs

with few shot learning were amongst the 50% of runs that selected the same distractor. We could not identify a novice

misconception that would lead to selecting that particular distractor. This was even more unusual because we had

designed a training item based on the structure of this item, and the answer to the training item was the same as the

distractor selected in half of LLM runs. Therefore, the training item could have afected model outputs, but we could

not identify an exact explanation as to how. Another explanation for the poor LLM performance could be the extensive

question description, which included an interface describing eight methods. This resulted in the item being the longest

of all items we evaluated across both the BDSI and SCS1 (2801 tokens).

4.2.3 Modifications of item structure for integration in HELM may have afected dificulty. BDSI Q7 required test-takers

to write a function to compute a property of a binary tree. The item was relatively difcult (� = 0.53), with an expected

30% of CS2 students getting this question correct. LLMs performed well on this item with 55% (11/20) of LLM runs

outputing the correct answer. A likely explanation was in how we had to change the answer structure to align with

HELM capabilities.

The original item provided four potential options and required CS2 students to select all that applied. There was only

one correct answer though. Because the HELM scenario we used could only allow one correct answer as an output, we

efectively changed the structure of the question to prompt the LLMs to select exactly one option (further described in

Manuscript submitted to ACM

16 Ali et al.

Section 4.3.3). By changing the item from “select all that apply” to “select one,” we reduced the number of valid answer

options, potentially explaining why LLMs performed better than expected CS2 students.

4.3 RQ3: Challenges with Automating LLM Benchmarking

We answered our third research question by identifying challenges and opportunities with using automated bench-

marking infrastructure in computing education research. Our goal was to use concept inventories as a benchmark and

use the HELM infrastructure to automatically evaluate the performance of current (and hopefully future) LLMs against

these CIs. In this section, we describe key challenges to using such a methodology:

4.3.1 Item security and benchmark leakage. Benchmark leakage (as described in Section 2.1.1) is a key concern to

CIs because of risks of excessive item exposure. Questions in CIs do not change, so ensuring the security of these

questions is crucial to the validity of interpreting and using their results. CI maintainers typically do not publicly post

their instruments, instead granting access to their instruments on a case-by-case basis. We therefore assumed that CI

items were not part of a training set for any LLMs. However, weak and shifting privacy policies typically enable LLM

developers to use past prompts as future training [60, 91, 113, 115]. We describe our processes of gaining consent from

CI maintainers and our failed attempts to limit benchmark leakage in Section 3.1. Using CIs as a benchmark opens a

“Pandora’s box” whereby we can assume that LLM developers will use CIs as future training data (as unlabeled data at

least).

4.3.2 Faithful translation of CI items. As described in Section 3.2, HELM expects data to be passed in as a list of Instance

objects, where an Instance represents a question and its associated answers. Typically, this data is prepared by frst

obtaining the requisite data set in JSON format, which streamlines the overall process (as well as allows users to take

advantage of the many existing examples within HELM). As such, preparing CIs for HELM required us to convert them

from their existing forms—generally human-readable PDFs—into JSON format. The difculty here arose from making

certain design decisions (see Section 3.2) which allowed us to represent CIs in such a format while ensuring we did not

change the spirit of what the authors wished to convey. For example, the BDSI consisted of several questions involving

graphs, which we needed to translate into a text representation both suitable for JSON and comprehensible to LLMs.

Once these decisions were made, the translation was fairly straightforward, but time consuming.

4.3.3 Limited structure of items. We were limited to multiple-choice questions with single answers in our work, as

it was unclear how to test for open-ended responses within HELM. Most directly, this limitation led to the exclusion

of the Basic Recursion Concept Inventory [37] in our work, as it is a rare instance of a CI which asks open-ended

free-response questions. Additionally, HELM does not currently support questions with multiple correct answers (i.e.

“select all that apply” questions), which led to the exclusion of two such questions in the BDSI.

4.3.4 Development of training questions for HELM. While LLMs are popularly associated with more advanced models

such as GPT-4 (0613), it is important to remember that not all models are quite so capable. Several models in HELM

(such as Mistral v0.1 (7B) and Anthropic Anthropic Claude v1.3, in our work), require example question-answer pairs

as few-shot training examples for in-context learning [105] in order to produce answers in the desired format. For

most HELM examples, researchers can just take a subset of the existing data set as a training/test split. However, this

approach was not suitable for CIs. Unlike other data sets, CIs are already small, and researchers will likely want to learn

about LLM performance on all items. Using existing questions as few-shot training examples prevents those questions

from being evaluated; thus, researchers must write additional example questions to mimic the structure of CI items. It
Manuscript submitted to ACM

17 Using Benchmarking Infrastructure to Evaluate LLM Performance on CS Concept Inventories

is worth noting, however, that these questions do not need to be high-quality assessment questions or even directly

related to the topic of the CI; they simply need to match the input and output structure of the other questions.

4.3.5 Barriers to accessing and using LLMs within HELM. Firstly, the use of HELM required the preparation of data

into a standardized machine-readable format and the use of a custom API, thereby requiring programming knowledge.

Though LLM research can sometimes be done within user interfaces, such an approach does not scale for evaluating

entire CIs and their individual items. Therefore, APIs must be used. Using a new type of data set for HELM requires

researchers to prepare data in a standardized machine-readable format (see 3.2). This work contributes a new Scenario,

called CIMCQA, to HELM, which future researchers may take advantage of. However, for other types of questions (e.g.

free-response items), researchers will need to author their own Scenarios if they cannot adapt existing one. Furthermore,

there are many subtleties within HELM itself that are difcult to navigate but essential to obtaining results. Our research

was only made possible because an author was a member of HELM’s research engineering team.

Finally, one of the more difcult challenges is obtaining access to all the available models in HELM. LLMs have

barriers to access. Most are accessible through closed or limited APIs which users typically must pay for. Open-access

LLMs often require owning or renting a CPU or paying for a commercial model interface platform to host the model.

These constraints also apply to HELM. HELM users must have their own API keys for every single model they wish to

use, a fairly limiting restriction considering the total number of models. These challenges to LLM access stand in the

way of using benchmarking infrastructure to support replication of benchmark evaluations on future LLMs.

5 DISCUSSION: UNDERSTANDING OF LLM PERFORMANCE FOR MORE VALID ASSESSMENTS

In this paper, we explored the feasibility of using HELM, an automated benchmarking framework, as a methodology

to support more reproducible, replicable, and rigorous empirical studies related to large language models (LLMs) in

computing education. We evaluated the performance of 10 LLMs with zero and few-shot learning on two CS concept

inventories (CIs): the SCS1 [82] to assess introductory computing knowledge, and the BDSI [86] to assess basic data

structures knowledge. We found that most LLM runs produced SCS1 responses that aligned with below average

introductory computing (CS1) students and BDSI responses that could not be modeled with a 2PL model. In an informal

expert review comparing LLM performance to item-level psychometric properties, we found that LLMs performed

well on code infl questions, but poorly on questions involving nested conditionals, runtime analysis, and longer

question descriptions. We also identifed challenges to our methodology involving CI item security, item translation,

and barriers to LLM access. Through an empirical investigation that compares LLM and expected student performance

using psychometric data and describes challenges to using HELM, this paper contributes as a feasibility study into the

use of automated benchmarking infrastructure as a methodological innovation to computing education research.

In this section, we interpret our fndings as they relate to the roles of LLMs in the iterative process of assessment design

in computing education. We specifcally consider the implications of using automated benchmarking infrastructure to

investigate the rapidly evolving intersections of LLM capabilities, computing concepts, and assessment design.

5.1 Limitations and Threats to Validity

One interpretation of our study is that it sufers from limitations and threats to validity that invalidate our fndings.

This is of particular concern as we investigate the feasibility of a new methodology.

Our study sufers from convenience sampling of LLMs to include. We included 10 LLMs from 4 diferent organizations

because we had access to their APIs. While these LLMs are popular and widely used at the time of our studies and prior

Manuscript submitted to ACM

18 Ali et al.

evaluations of LLMs typically consider fewer LLMs (e.g. [29, 56, 66, 98]), our fndings are limited to the LLMs in this

set. While they enable us to make hypotheses about how other LLMs might perform on the SCS1 and BDSI, we rely

on future work to conduct hypothesis-driven studies that could yield more defnitive claims. Furthermore, the HELM

infrastructure makes evaluation of these CI items on additional LLMs more reliable, thus supporting replication of this

study.

A threat to validity relates to the choices we made while translating CI items (particularly code and images) into

the text passed into HELM. While we cannot make the example prompts we passed in public to maintain some level

of item security, we attempted to be transparent in our design decisions in Section 3.2. Nevertheless, the possibility

remains that some design decisions caused LLMs to interpret a CI item diferently from how a student may interpret

the original item, thus confounding our results. One example of this is how we changed a “select all that apply” item to

a “select one” item to make it compatible with HELM infrastructure, as described in Section 4.2.3.

Another threat to validity is in our modeling of LLM responses as independent test-takers. Item Response Theory

assumes that test-takers are providing responses independently of each other [19]. We make this assumption while

recognizing that all 10 LLMs were created by four organizations. Furthermore, we attempt to model LLM runs as test-

takers and measure their knowledge levels, � . We checked for adequate ft to the psychometric models prior to reporting

knowledge levels. We also used few-shot learning to reduce the number of invalid (and therefore incorrect) LLM

responses to almost zero. Section 4.1 fully describes these checks that we conducted to ensure more valid comparison

of LLM responses to expected student responses.

We also acknowledge that our informal expert review panel might have led to potentially biased results. We aim for

this work to act as a pilot that sets the stage for future work with a larger panel and formally established methodology

[73].

A fnal threat to validity is that benchmark leakage will invalidate future automated benchmarks. We should expect

that LLMs may incorporate the CIs used for the benchmarks into their training data. This is currently an unavoidable

risk, however, since few LLMs provide the facility to prevent leakage, and benchmarking cannot be done without passing

in the data. Future work can investigate the use of techniques to mitigate and detect benchmark leakage [60, 91, 115].

5.2 Automating Closed-Ended Evaluations for Reproducibility and Replicability

Another interpretation of our fndings is that the use of automated benchmarking infrastructure supports more

reproducible and replicable evaluations of LLM performance on tasks related to computing education. As stated in

Section 2.1, it is easier to automate more closed-ended tasks with clear measures of correctness, such as multiple-choice

questions in CIs. While benchmarks are usually shared publicly, this should not occur to ensure the item security of CI

items.

Before a CI can actually be passed into an LLM, it must be translated efectively into a format that a language

model can interpret. It is well documented that prompting LLMs in certain ways can change the output [87, 106],

and this extends to the CI questions themselves, because they become part of the prompt. While we documented our

design decisions to aid replicability, we do not suggest our design decisions were ideal. The possibility remains that

an alternative translation may have made greater sense to LLMs, or better enable them to mimic actual students. We

identify this as a potential area of future work.

Our use of HELM helped address a key confound to evaluating LLM performance in assessments: determining

correctness. Mahon et al. [68] identifed how a majority of ChatGPT’s incorrect responses to multiple choice questions

involved ChatGPT outputting correct explanations, but incorrect or invalid outputs. Our use of HELM’s few shot
Manuscript submitted to ACM

19 Using Benchmarking Infrastructure to Evaluate LLM Performance on CS Concept Inventories

in-context learning functionality reduced the number of invalid responses to 0-2% (Table 2), thereby almost eliminating

the confound of LLMs producing an invalid response. Furthermore, sensitivity to prompt structure is a likely explanation

for LLMs outputting incorrect responses despite correct explanations [49, 68]. Frameworks such as HELM can help

address this by enabling more consistent and reusable structures of input prompts of LLMs. In our study, we developed

the CIMCQA Scenario to do this (see Section 3.2), which future work can interrogate, utilize, and/or adapt. This

transparent and more consistent prompt structuring can support more reproducible evaluations. Furthermore, HELM’s

continuous integration of new LLMs drastically reduces the barriers to future work that replicates previous evaluations

on new LLMs, a key challenge to LLM research in computing education moving forward [87].

Taking a broader perspective, accessing and running more LLMs with HELM is perhaps the most pressing research

challenge. More ambitious future work could involve extending this methodology to benchmark and evaluate all CIs

with validity evidence against all common and modern LLMs in HELM. Though HELM provides the framework needed

to carry out this work, it does not by default provide the monetary resources, as users must provide possess independent

access for any model they desire to use. With the large number of LLMs available in HELM and at least 14 computing

CIs with validity evidence [3, 41], the amount of resources needed is potentially best suited for a team of collaborative

researchers.

A key implication of automated benchmarking infrastructure for reproducible and replicable computing

education research is the investigation of hypotheses at the intersection of LLM capabilities, item design, and

computing concepts. For example, our informal expert panel review (Section 4.2.1) identifed that LLMs performed

poorly on a low difculty SCS1 question that CS1 students performed well on. This item involved tracing pseudocode

which contained a nested conditional. We generated multiple explanations as to why LLM performance deviated from

expected student performance, including aspects of the item design (LLMs may struggle to parse the pseudocode) or

computing concepts being assessed (LLMs may struggle with nested conditionals). A computing education researcher or

practitioner could feasibly investigate these hypotheses by designing items to explore each one (e.g. a pool of equivalent

items in the pseudocode and other programming languages to determine LLM sensitivity to programming language, and

a pool of diferent items assessing nested conditionals in the same programming language to determine LLM sensitivity

to a computing concept). They could then use automated benchmarking infrastructure such as HELM to efectively

control for confounding variables (e.g. prompt structure, determining correctness, etc.) when evaluating performance of

diferent LLMs, thus supporting reproducibility. Crucially, they could also control for these confounds when evaluating

new LLMs, thus supporting replicability.

5.3 Mixed-Methods Evaluations for Rigor

A fnal interpretation of our fndings is that applying mixed-methods to connect LLM outputs with additional informa-

tion such as psychometric evidence provides more rigorous investigations into the intersection of LLM capabilities,

assessment design, and computing concepts.

For LLM runs with response patterns that ft the CI’s 2PL models, we found that LLMs refected knowledge of below

average introductory CS knowledge but of above average data structures knowledge (see Section 4.1). We would not

expect this pattern with any students because introductory CS knowledge is taught before and is typically considered

pre-requisite knowledge to data structures. Future work can investigate whether this pattern is consistent and why this

may be the case.

Existing psychometric data enabled our informal expert panel review to compare LLM responses to expected student

responses. The use of concept inventories as benchmarks with existing validity evidence enabled more rigorous
Manuscript submitted to ACM

20 Ali et al.

evaluations. Furthermore, because concept inventories are specifcally designed to identify student misconceptions, it

was easier to pinpoint what exact topics LLMs struggled with when evaluating our results. This is a key diference

between our benchmarking work as compared with prior work, which often used summative assessments from courses

[96] or standardized assessments which may have validity evidence, but lack the structure and transparency of concept

inventories to enable identifcation of misconceptions for specifc concepts [49, 68]. In particular, we used item trace

plots from Xie et al. [112] to consider whether LLMs and CS1 students of diferent knowledge levels selected similar

or diferent distractors for the SCS1. This served as a key signal to identify whether LLM outputs refected common

student misconceptions (clustering towards similar distractors). When LLMs clustered towards uncommon distractors,

we developed hypotheses related to item design, LLM design, and computing concepts, as described in Section 4.2.

Mixed-methods future work could further explore these hypotheses to inform the design of computing pedagogy

and assessment that are more resilient to changing LLM capabilities. Such future work could follow a similar mixed-

methods approach by designing new items to benchmark, evaluating them with students and/or LLMs (using automated

benchmarking infrastructure), and then conducting qualitative follow-up investigations with domain experts and

students to better understand patterns. Future work could also investigate student perspectives on unusual items.

Cognitive Interviews [27] with students in the target population could provide a more clear understanding of students’

thought processes when answering questions, as well as new hypotheses on why LLMs perform diferently than

students on given items.

A key implication of more rigorous evaluations with automated benchmarking infrastructure is the

opportunity for LLM-aided assessment design. Prior work in computing education has found that LLMs perform

well on many programming tasks [1, 57, 65, 81, 87]. This is in part because LLM developers train their models on vast

repositories of openly available code (e.g. GitHub) and have fnancial incentive to support programming tasks (e.g.

code infll [34]). Therefore, LLM advancements will likely make the design of computing assessments particularly

more challenging. Automated benchmarking infrastructure may be able to support assessment designers by simulating

students to gauge item difculty and/or using psychometric evidence to iteratively design more LLM-resilient items.

Future work may also investigate the potential for LLMs to support automating aspects of item generation [47, 95],

such as by generating informative distractors for multiple choice items [55, 69] or developing parallel items with similar

difculty [47].

6 CONCLUSION

In this paper, we described our process in efciently and systematically evaluating LLM performance on computing

education assessments with validity evidence. It is our hope that our work can contribute to a deeper understanding of

the impact of LLMs on assessing students, as well as set the foundation for future work that can inform instructors in

designing assessments that are more resilient against completion by LLMs.

Given the growing waves of LLMs and Generative AI tools, we want to acknowledge that advancements of LLMs

do not necessarily translate to equitable benefts to students [12, 32, 67, 108]; assessments are not perfect or all-

encompassing measures of learning [4, 75, 76]; and not all facets of computing are well-represented in AI tools [68, 87].

Therefore, we hope that computing education can leverage automated benchmarking infrastructure to encourage more

cross-disciplinary, human-centered, and enduring investigations at the intersections of LLM capabilities, assessment

design, and computing concepts in computing education.

Manuscript submitted to ACM

21 Using Benchmarking Infrastructure to Evaluate LLM Performance on CS Concept Inventories

ACKNOWLEDGMENTS

This material is based upon work supported by the Stanford Accelerator for Learning, Institute for Human-Centered

Artifcial Intelligence, Center for Research on Foundation Models, McCoy Family Center for Ethics in Society, and

research credits provided by OpenAI. We thank Prof. Leif Wenar, Dr. Anne Newman, Dr. Shannon Sylvie Abelson, Dr.

Moya Mapps, Dr. Ann Thresher, Prof. Ting-An Lin, Dr. Veronica Rivera, Dr. Jonathan Vandenburgh, and Dr. Daniel

Webber of the McCoy Family Center for Ethics in Society for their cross-disciplinary insights and careful feedback

across multiple iterations of this paper. We would also like to thank Dr. Sayamindu Dasgupta, the frst author’s Ph.D.

advisor, for guidance and advice regarding the framing of this paper.

Documentation on how to use HELM can be found here: https://crfm-helm.readthedocs.io/en/latest/. The CIM-

CQAScenario we developed is available here: https://github.com/Murtz5253/helm/blob/main/src/helm/benchmark/

scenarios/ci_mcqa_scenario.py. To preserve item security of concept inventories, we cannot share CI items. To ac-

cess the concept inventories, please contact corresponding authors for Parker et al. [82] and Porter et al. [86]. Fi-

nally, we include all supplemental material to this paper (including the full document of design decisions taken

to integrate CIs into HELM as well as our few-shot training items for HELM) at this public Github repository:

https://github.com/Murtz5253/csed-benchmark-supplemental/tree/main

REFERENCES

[1] Vibhor Agarwal, Nakul Thureja, Madhav Krishan Garg, Sahiti Dharmavaram, Meghna, and Dhruv Kumar. 2024. “Which LLM should I use?”:

Evaluating LLMs for tasks performed by Undergraduate Computer Science Students in India. (Jan. 2024). arXiv:2402.01687 [cs.CY]

[2] Garima Agrawal, Kuntal Pal, Yuli Deng, Huan Liu, and Ying-Chih Chen. 2024. CyberQ: Generating Questions and Answers for Cybersecurity

Education Using Knowledge Graph-Augmented LLMs. Proceedings of the AAAI Conference on Artifcial Intelligence 38, 21 (Mar. 2024), 23164–23172.

https://doi.org/10.1609/aaai.v38i21.30362

[3] Murtaza Ali, Sourojit Ghosh, Prerna Rao, Raveena Dhegaskar, Sophia Jawort, Alix Medler, Mengqi Shi, and Sayamindu Dasgupta. 2023. Taking

Stock of Concept Inventories in Computing Education: A Systematic Literature Review. In Proceedings of the 2023 ACM Conference on International
Computing Education Research - Volume 1 (Chicago, IL, USA) (ICER ’23, Vol. 1). Association for Computing Machinery, New York, NY, USA, 397–415.

https://doi.org/10.1145/3568813.3600120

[4] Mary J Allen and Wendy M Yen. 2001. Introduction to Measurement Theory. Waveland Press.

[5] Ryan S Baker. 2016. Stupid Tutoring Systems, Intelligent Humans. International Journal of Artifcial Intelligence in Education 26, 2 (June 2016),

600–614. https://doi.org/10.1007/s40593-016-0105-0

[6] Rishabh Balse, Bharath Valaboju, Shreya Singhal, Jayakrishnan Madathil Warriem, and Prajish Prasad. 2023. Investigating the Potential of GPT-3 in

Providing Feedback for Programming Assessments. In Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education

V. 1 (Turku, Finland) (ITiCSE 2023). Association for Computing Machinery, New York, NY, USA, 292–298. https://doi.org/10.1145/3587102.3588852

[7] Erin M Bardar, Edward E Prather, Kenneth Brecher, and Timothy F Slater. 2007. Development and validation of the light and spectroscopy concept

inventory. Astronomy Education Review 5, 2 (2007), 103–113.

[8] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. 2000. A neural probabilistic language model. Advances in neural information processing

systems 13 (2000).

[9] BIG-bench authors. 2023. Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models. Transactions on Machine
Learning Research (2023).

[10] Paulo Blikstein and Sepi Hejazi Moghadam. 2019. Computing Education Literature Review and Voices from the Field. In The Cambridge Handbook

of Computing Education Research. Cambridge University Press, 56–78. https://doi.org/10.1017/9781108654555.004

[11] Borhane Blili-Hamelin and Leif Hancox-Li. 2023. Making Intelligence: Ethical Values in IQ and ML Benchmarks. In Proceedings of the 2023 ACM

Conference on Fairness, Accountability, and Transparency (Chicago, IL, USA) (FAccT ’23). Association for Computing Machinery, New York, NY, USA,

271–284. https://doi.org/10.1145/3593013.3593996

[12] Su Lin Blodgett and Michael Madaio. 2021. Risks of AI Foundation Models in Education. (Oct. 2021). arXiv:2110.10024 [cs.CY]

[13] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine

Bosselut, Emma Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,

Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh,

Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter

Henderson, John Hewitt, Daniel E Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth

Manuscript submitted to ACM

https://crfm-helm.readthedocs.io/en/latest/
https://github.com/Murtz5253/helm/blob/main/src/helm/benchmark/scenarios/ci_mcqa_scenario.py
https://github.com/Murtz5253/helm/blob/main/src/helm/benchmark/scenarios/ci_mcqa_scenario.py
https://github.com/Murtz5253/csed-benchmark-supplemental/tree/main
https://arxiv.org/abs/2402.01687
https://doi.org/10.1609/aaai.v38i21.30362
https://doi.org/10.1145/3568813.3600120
https://doi.org/10.1007/s40593-016-0105-0
https://doi.org/10.1145/3587102.3588852
https://doi.org/10.1017/9781108654555.004
https://doi.org/10.1145/3593013.3593996
https://arxiv.org/abs/2110.10024

22 Ali et al.

Karamcheti, Geof Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal

Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma, Ali Malik, Christopher D Manning, Suvir

Mirchandani, Eric Mitchell, Zanele Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles,

Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance, Christopher Potts,

Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa,

Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori, Armin W Thomas, Florian Tramèr, Rose E Wang, William Wang,

Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun

Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. 2021. On the Opportunities and Risks of Foundation Models. (Aug. 2021).

arXiv:2108.07258 [cs.LG]

[14] Neil C C Brown, Eva Marinus, and Aleata Hubbard Cheuoua. 2022. Launching Registered Report Replications in Computer Science Education

Research. In Proceedings of the 2022 ACM Conference on International Computing Education Research - Volume 1 (Lugano and Virtual Event,

Switzerland) (ICER ’22). Association for Computing Machinery, New York, NY, USA, 309–322. https://doi.org/10.1145/3501385.3543971

[15] Ricardo Cacefo, Pablo Frank-Bolton, Renan Souza, and Rodolfo Azevedo. 2019. Identifying and Validating Java Misconceptions Toward a CS1

Concept Inventory. In Proceedings of the 2019 ACM Conference on Innovation and Technology in Computer Science Education (Aberdeen, Scotland Uk)

(ITiCSE ’19). Association for Computing Machinery, New York, NY, USA, 23–29. https://doi.org/10.1145/3304221.3319771

[16] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, Wei

Ye, Yue Zhang, Yi Chang, Philip S Yu, Qiang Yang, and Xing Xie. 2023. A Survey on Evaluation of Large Language Models. (July 2023).

arXiv:2307.03109 [cs.CL]

[17] Will Crichton, Gavin Gray, and Shriram Krishnamurthi. 2023. A Grounded Conceptual Model for Ownership Types in Rust. Proc. ACM Program.
Lang. 7, OOPSLA2 (Oct. 2023), 1224–1252. https://doi.org/10.1145/3622841

[18] C H Crouch and E Mazur. 2001. Peer Instruction: Ten years of experience and results. Am. J. Phys. 69 (Aug. 2001), 970–977. https://doi.org/10.

1119/1.1374249

[19] R J De Ayala. 2009. The theory and practice of item response theory. Guilford Press, New York.

[20] Adrian de Freitas, Joel Cofman, Michelle de Freitas, Justin Wilson, and Troy Weingart. 2023. FalconCode: A Multiyear Dataset of Python Code

Samples from an Introductory Computer Science Course. In Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1

(Toronto ON, Canada,) (SIGCSE 2023). Association for Computing Machinery, New York, NY, USA, 938–944. https://doi.org/10.1145/3545945.3569822

[21] Mostafa Dehghani, Yi Tay, Alexey A Gritsenko, Zhe Zhao, Neil Houlsby, Fernando Diaz, Donald Metzler, and Oriol Vinyals. 2021. The Benchmark

Lottery. (July 2021). arXiv:2107.07002 [cs.LG]

[22] Andre Del Carpio Gutierrez, Paul Denny, and Andrew Luxton-Reilly. 2024. Evaluating Automatically Generated Contextualised Programming

Exercises. In Proceedings of the 55th ACM Technical Symposium on Computer Science Education V. 1 (Portland, Oregon, USA) (SIGCSE 2024).
Association for Computing Machinery, New York, NY, USA, 289–295. https://doi.org/10.1145/3626252.3630863

[23] Jwala Dhamala, Tony Sun, Varun Kumar, Satyapriya Krishna, Yada Pruksachatkun, Kai-Wei Chang, and Rahul Gupta. 2021. BOLD: Dataset and

Metrics for Measuring Biases in Open-Ended Language Generation. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and

Transparency (Virtual Event, Canada) (FAccT ’21). Association for Computing Machinery, New York, NY, USA, 862–872. https://doi.org/10.1145/

3442188.3445924

[24] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and Zhifang Sui. 2023. A Survey on In-context

Learning. arXiv:2301.00234 [cs.CL]

[25] Fritz Drasgow, Michael V Levine, and Esther A Williams. 1985. Appropriateness measurement with polychotomous item response models and

standardized indices. Br. J. Math. Stat. Psychol. 38, 1 (May 1985), 67–86. https://doi.org/10.1111/j.2044-8317.1985.tb00817.x

[26] Jerome Epstein. 2007. Development and validation of the Calculus Concept Inventory. In Proceedings of the ninth international conference on

mathematics education in a global community, Vol. 9. Citeseer, 165–170.
[27] Karl Anders Ericsson and Herbert Alexander Simon. 1993. Protocol Analysis: Verbal Reports as Data Revised Edition. The MIT Press.

[28] Hans Eysenck and Steven Rose. 1979. Race, intelligence and education. New community 7, 2 (June 1979), 278–283. https://doi.org/10.1080/1369183X.

1979.9975576

[29] James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio Santos, James Prather, and Brett A Becker. 2023. My AI wants to know if

this will be on the exam: Testing OpenAI’s codex on CS2 programming exercises. In Australasian Computing Education Conference (Melbourne VIC

Australia). ACM, New York, NY, USA. https://doi.org/10.1145/3576123.3576134

[30] James Finnie-Ansley, Paul Denny, Andrew Luxton-Reilly, Eddie Antonio Santos, James Prather, and Brett A. Becker. 2023. My AI Wants to Know if

This Will Be on the Exam: Testing OpenAI’s Codex on CS2 Programming Exercises. In Proceedings of the 25th Australasian Computing Education

Conference (Melbourne, VIC, Australia) (ACE ’23). Association for Computing Machinery, New York, NY, USA, 97–104. https://doi.org/10.1145/

3576123.3576134

[31] Melissa J Gillis and Andrew T Jacobs. 2019. Introduction to Women’s and Gender Studies: An Interdisciplinary Approach. Oxford University Press.

[32] Global Future Council on Artifcial Intelligence for Humanity. 2022. A Blueprint for Equity and Inclusion in Artifcial Intelligence. Technical Report.
World Economic Forum.

[33] Ken Goldman, Paul Gross, Cinda Heeren, Geofrey Herman, Lisa Kaczmarczyk, Michael C. Loui, and Craig Zilles. 2008. Identifying important and

difcult concepts in introductory computing courses using a delphi process. SIGCSE Bull. 40, 1 (mar 2008), 256–260. https://doi.org/10.1145/

Manuscript submitted to ACM

https://arxiv.org/abs/2108.07258
https://doi.org/10.1145/3501385.3543971
https://doi.org/10.1145/3304221.3319771
https://arxiv.org/abs/2307.03109
https://doi.org/10.1145/3622841
https://doi.org/10.1119/1.1374249
https://doi.org/10.1119/1.1374249
https://doi.org/10.1145/3545945.3569822
https://arxiv.org/abs/2107.07002
https://doi.org/10.1145/3626252.3630863
https://doi.org/10.1145/3442188.3445924
https://doi.org/10.1145/3442188.3445924
https://arxiv.org/abs/2301.00234
https://doi.org/10.1111/j.2044-8317.1985.tb00817.x
https://doi.org/10.1080/1369183X.1979.9975576
https://doi.org/10.1080/1369183X.1979.9975576
https://doi.org/10.1145/3576123.3576134
https://doi.org/10.1145/3576123.3576134
https://doi.org/10.1145/3576123.3576134
https://doi.org/10.1145/1352322.1352226
https://doi.org/10.1145/1352322.1352226

23 Using Benchmarking Infrastructure to Evaluate LLM Performance on CS Concept Inventories

1352322.1352226

[34] Linyuan Gong, Sida Wang, Mostafa Elhoushi, and Alvin Cheung. 2024. Evaluation of LLMs on Syntax-Aware Code Fill-in-the-Middle Tasks. (March

2024). arXiv:2403.04814 [cs.CL]

[35] S Hall, F G Abrantes, Hanwen Zhu, Grace A Sodunke, Aleksandar Shtedritski, and Hannah Rose Kirk. 2023. VisoGender: A dataset for benchmarking

gender bias in image-text pronoun resolution. Adv. Neural Inf. Process. Syst. abs/2306.12424 (June 2023). https://doi.org/10.48550/arXiv.2306.12424

[36] Ibrahim Abou Halloun and David Hestenes. 1985. The initial knowledge state of college physics students. Am. J. Phys. 53, 11 (Nov. 1985), 1043–1055.

https://doi.org/10.1119/1.14030

[37] Sally Hamouda, Stephen H Edwards, Hicham G Elmongui, Jeremy V Ernst, and Cliford A Shafer. 2017. A basic recursion concept inventory.

Computer Science Education 27, 2 (2017), 121–148.

[38] Sarah Heckman, Jefrey C Carver, Mark Sherrif, and Ahmed Al-zubidy. 2021. A Systematic Literature Review of Empiricism and Norms of

Reporting in Computing Education Research Literature. ACM Trans. Comput. Educ. 22, 1 (Oct. 2021), 1–46. https://doi.org/10.1145/3470652

[39] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song,

et al. 2021. Measuring coding challenge competence with apps. arXiv preprint arXiv:2105.09938 (2021).

[40] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt. 2021. Measuring

Mathematical Problem Solving With the MATH Dataset. (March 2021). arXiv:2103.03874 [cs.LG]

[41] Geofrey L Herman, Shan Huang, Peter A Peterson, Linda Oliva, Enis Golaszewski, and Alan T Sherman. 2023. Psychometric Evaluation of the

Cybersecurity Curriculum Assessment. In Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1 (Toronto ON,

Canada) (SIGCSE 2023). Association for Computing Machinery, New York, NY, USA, 228–234. https://doi.org/10.1145/3545945.3569762

[42] Geofrey L. Herman, Michael C. Loui, and Craig Zilles. 2010. Creating the digital logic concept inventory. In Proceedings of the 41st ACM Technical
Symposium on Computer Science Education (Milwaukee, Wisconsin, USA) (SIGCSE ’10). Association for Computing Machinery, New York, NY, USA,

102–106. https://doi.org/10.1145/1734263.1734298

[43] Matthew Hertz. 2010. What do "CS1" and "CS2" mean? investigating diferences in the early courses. In Proceedings of the 41st ACM Technical
Symposium on Computer Science Education (Milwaukee, Wisconsin, USA) (SIGCSE ’10). Association for Computing Machinery, New York, NY, USA,

199–203. https://doi.org/10.1145/1734263.1734335

[44] David Hestenes, Malcolm Wells, Gregg Swackhamer, and Others. 1992. Force concept inventory. Phys. Teach. 30, 3 (1992), 141–158.

[45] Charles L Hulin, Fritz Drasgow, and Charles K Parsons. 1983. Item Response Theory: Application to Psychological Measurement. Dow Jones-Irwin.

[46] Frederick Jelinek. 1998. Statistical methods for speech recognition. MIT press.

[47] Hong Jiao and Robert W Lissitz. 2020. Application of Artifcial Intelligence to Assessment. IAP.
[48] Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. 2021. What Disease Does This Patient Have? A

Large-Scale Open Domain Question Answering Dataset from Medical Exams. NATO Adv. Sci. Inst. Ser. E Appl. Sci. 11, 14 (July 2021), 6421.

https://doi.org/10.3390/app11146421

[49] Ishika Joshi, Ritvik Budhiraja, Harshal Dev, Jahnvi Kadia, Mohammad Osama Ataullah, Sayan Mitra, Harshal D. Akolekar, and Dhruv Kumar. 2024.

ChatGPT in the Classroom: An Analysis of Its Strengths and Weaknesses for Solving Undergraduate Computer Science Questions. In Proceedings of
the 55th ACM Technical Symposium on Computer Science Education V. 1 (Portland, OR, USA) (SIGCSE 2024). Association for Computing Machinery,

New York, NY, USA, 625–631. https://doi.org/10.1145/3626252.3630803

[50] Lisa C. Kaczmarczyk, Elizabeth R. Petrick, J. Philip East, and Geofrey L. Herman. 2010. Identifying student misconceptions of programming.

In Proceedings of the 41st ACM Technical Symposium on Computer Science Education (Milwaukee, Wisconsin, USA) (SIGCSE ’10). Association for

Computing Machinery, New York, NY, USA, 107–111. https://doi.org/10.1145/1734263.1734299

[51] Michael T Kane. 2013. Validating the Interpretations and Uses of Test Scores. Journal of Educational Measurement 50, 1 (March 2013), 1–73.

https://doi.org/10.1111/jedm.12000

[52] Masahiro Kaneko, Danushka Bollegala, Naoaki Okazaki, and Timothy Baldwin. 2024. Evaluating Gender Bias in Large Language Models via

Chain-of-Thought Prompting. (Jan. 2024). arXiv:2401.15585 [cs.CL]

[53] Kuba Karpierz and Steven A. Wolfman. 2014. Misconceptions and concept inventory questions for binary search trees and hash tables. In Proceedings
of the 45th ACM Technical Symposium on Computer Science Education (Atlanta, Georgia, USA) (SIGCSE ’14). Association for Computing Machinery,

New York, NY, USA, 109–114. https://doi.org/10.1145/2538862.2538902

[54] Theodoros A Kyriazos and Anastasios Stalikas. 2018. Applied psychometrics: The steps of scale development and standardization process.

Psychology 09, 11 (2018), 2531–2560. https://doi.org/10.4236/psych.2018.911145

[55] Hollis Lai, Mark J Gierl, Claire Touchie, Debra Pugh, André-Philippe Boulais, and André De Champlain. 2016. Using Automatic Item Generation to

Improve the Quality of MCQ Distractors. Teach. Learn. Med. 28, 2 (2016), 166–173. https://doi.org/10.1080/10401334.2016.1146608

[56] Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne Kim, Andrew Tran, and Arto Hellas. 2023. Comparing Code

Explanations Created by Students and Large Language Models. (April 2023). arXiv:2304.03938 [cs.CY]

[57] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James Prather, and Brett A Becker. 2023. Using Large Language Models to

Enhance Programming Error Messages. In Proceedings of the 54th ACM Technical Symposium on Computer Science Education V. 1 (Toronto ON,

Canada) (SIGCSE 2023). Association for Computing Machinery, New York, NY, USA, 563–569. https://doi.org/10.1145/3545945.3569770

[58] Colleen M Lewis, Huda Khayrallah, and Amy Tsai. 2013. Mining data from the AP CS a exam: patterns, non-patterns, and replication failure. In

Proceedings of the ninth annual international ACM conference on International computing education research (San Diego, San California, USA) (ICER

Manuscript submitted to ACM

https://doi.org/10.1145/1352322.1352226
https://doi.org/10.1145/1352322.1352226
https://arxiv.org/abs/2403.04814
https://doi.org/10.48550/arXiv.2306.12424
https://doi.org/10.1119/1.14030
https://doi.org/10.1145/3470652
https://arxiv.org/abs/2103.03874
https://doi.org/10.1145/3545945.3569762
https://doi.org/10.1145/1734263.1734298
https://doi.org/10.1145/1734263.1734335
https://doi.org/10.3390/app11146421
https://doi.org/10.1145/3626252.3630803
https://doi.org/10.1145/1734263.1734299
https://doi.org/10.1111/jedm.12000
https://arxiv.org/abs/2401.15585
https://doi.org/10.1145/2538862.2538902
https://doi.org/10.4236/psych.2018.911145
https://doi.org/10.1080/10401334.2016.1146608
https://arxiv.org/abs/2304.03938
https://doi.org/10.1145/3545945.3569770

24 Ali et al.

’13). Association for Computing Machinery, New York, NY, USA, 115–122. https://doi.org/10.1145/2493394.2493415

[59] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart:

Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv preprint arXiv:1910.13461

(2019).

[60] Changmao Li and Jefrey Flanigan. 2023. Task Contamination: Language Models May Not Be Few-Shot Anymore. (Dec. 2023).

arXiv:2312.16337 [cs.CL]

[61] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya

Kumar, Benjamin Newman, Binhang Yuan, Bobby Yan, Ce Zhang, Christian Cosgrove, Christopher D Manning, Christopher Ré, Diana Acosta-Navas,

Drew A Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang, Keshav Santhanam, Laurel Orr,

Lucia Zheng, Mert Yuksekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri Chatterji, Omar Khattab, Peter Henderson, Qian Huang, Ryan

Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang,

Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta Koreeda. 2022. Holistic Evaluation of Language Models. (Nov. 2022). arXiv:2211.09110 [cs.CL]

[62] Percy Liang, Yifan Mai, Josselin Somerville, Farzaan Kaiyom, Tony Lee, and Rishi Bommasani. 2023. HELM Lite: Lightweight and Broad Capabilities

Evaluation. https://crfm.stanford.edu/2023/12/19/helm-lite.html. Accessed: 2024-3-2.

[63] Julie Libarkin. 2008. Concept Inventories in Higher Education Science. In National Research Council Promising Practices in Undergraduate STEM

Education Workshop, Vol. 13. 14.
[64] Julie C Libarkin and Steven W Anderson. 2005. Assessment of learning in entry-level geoscience courses: Results from the Geoscience Concept

Inventory. Journal of Geoscience Education 53, 4 (2005), 394–401.

[65] Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul Denny, Seth Bernstein, and Juho Leinonen. 2023. Experiences from

Using Code Explanations Generated by Large Language Models in a Web Software Development E-Book. In Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 1 (Toronto ON, Canada) (SIGCSE 2023). Association for Computing Machinery, New York, NY, USA,

931–937. https://doi.org/10.1145/3545945.3569785

[66] Stephen MacNeil, Andrew Tran, Dan Mogil, Seth Bernstein, Erin Ross, and Ziheng Huang. 2022. Generating Diverse Code Explanations using the GPT-

3 Large Language Model. In Proceedings of the 2022 ACM Conference on International Computing Education Research - Volume 2 (Lugano and Virtual

Event, Switzerland) (ICER ’22, Vol. 2). Association for Computing Machinery, New York, NY, USA, 37–39. https://doi.org/10.1145/3501709.3544280

[67] Michael Madaio, Su Lin Blodgett, Elijah Mayfeld, and Ezekiel Dixon-Román. 2021. Beyond “fairness:” structural (in)justice lenses on AI for

education. (May 2021). arXiv:2105.08847 [cs.CY]

[68] Joyce Mahon, Brian Mac Namee, and Brett A. Becker. 2023. No More Pencils No More Books: Capabilities of Generative AI on Irish and UK Computer

Science School Leaving Examinations. In Proceedings of the 2023 Conference on United Kingdom & Ireland Computing Education Research (Swansea,

Wales Uk,) (UKICER ’23). Association for Computing Machinery, New York, NY, USA, Article 2, 7 pages. https://doi.org/10.1145/3610969.3610982

[69] Wojciech Malec. 2024. Investigating the quality of AI-generated distractors for a multiple-choice vocabulary test. https://doi.org/10.5220/

0012762400003693

[70] Lauri Malmi, Judy Sheard, Päivi Kinnunen, Simon, and Jane Sinclair. 2019. Computing Education Theories: What Are They and How Are They

Used?. In Proceedings of the 2019 ACM Conference on International Computing Education Research (Toronto ON, Canada) (ICER ’19). Association for

Computing Machinery, New York, NY, USA, 187–197. https://doi.org/10.1145/3291279.3339409

[71] Nestor Maslej, Loredana Fattorini, Erik Brynjolfsson, John Etchemendy, Katrina Ligett, Terah Lyons, James Manyika, Helen Ngo, Juan Carlos

Niebles, Vanessa Parli, Yoav Shoham, Russell Wald, Jack Clark, and Raymond Perrault. 2023. The AI Index 2023 Annual Report. Technical Report.
Stanford University.

[72] J Nathan Matias, Sayamindu Dasgupta, and Benjamin Mako Hill. 2016. Skill Progression in Scratch Revisited. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems (CHI ’16). ACM, New York, NY, USA, 1486–1490. https://doi.org/10.1145/2858036.2858349

[73] Daniel McCafrey, Jodi Casabianca, Kathryn Ricker-Pedley, René Lawless, and Cathy Wendler. 2021. Best Practices for Constructed-Response Scoring.
Technical Report. Educational Testing Services.

[74] Monica M McGill, Tom McKlin, and Errol Kaylor. 2019. Defning What Empirically Works Best: Dynamic Generation of Meta-Analysis for Computer

Science Education. In Proceedings of the 2019 ACM Conference on International Computing Education Research (Toronto ON, Canada) (ICER ’19).
Association for Computing Machinery, New York, NY, USA, 199–207. https://doi.org/10.1145/3291279.3339401

[75] Samuel Messick. 1993. Validity. In Educational Measurement. Third Edition. American Council on Education Series on Higher Education. Oryx Press,

4041 North Central at Indian School Road, Phoenix, AZ 85012-3397., 13–103.

[76] Samuel Messick. 1995. Validity of psychological assessment: Validation of inferences from persons’ responses and performances as scientifc

inquiry into score meaning. The American psychologist 50, 9 (Sept. 1995), 741–749. https://doi.org/10.1037/0003-066X.50.9.741

[77] Briana B Morrison, Adrienne Decker, and Lauren E Margulieux. 2016. Learning Loops: A Replication Study Illuminates Impact of HS Courses. In

Proceedings of the 2016 ACM Conference on International Computing Education Research (Melbourne, VIC, Australia) (ICER ’16). Association for

Computing Machinery, New York, NY, USA, 221–230. https://doi.org/10.1145/2960310.2960330

[78] Douglas R Mulford and William R Robinson. 2002. An inventory for alternate conceptions among frst-semester general chemistry students.

Journal of chemical education 79, 6 (2002), 739.

[79] Moin Nadeem, Anna Bethke, and Siva Reddy. 2020. StereoSet: Measuring stereotypical bias in pretrained language models. (April 2020).

arXiv:2004.09456 [cs.CL]

Manuscript submitted to ACM

https://doi.org/10.1145/2493394.2493415
https://arxiv.org/abs/2312.16337
https://arxiv.org/abs/2211.09110
https://crfm.stanford.edu/2023/12/19/helm-lite.html
https://doi.org/10.1145/3545945.3569785
https://doi.org/10.1145/3501709.3544280
https://arxiv.org/abs/2105.08847
https://doi.org/10.1145/3610969.3610982
https://doi.org/10.5220/0012762400003693
https://doi.org/10.5220/0012762400003693
https://doi.org/10.1145/3291279.3339409
https://doi.org/10.1145/2858036.2858349
https://doi.org/10.1145/3291279.3339401
https://doi.org/10.1037/0003-066X.50.9.741
https://doi.org/10.1145/2960310.2960330
https://arxiv.org/abs/2004.09456

25 Using Benchmarking Infrastructure to Evaluate LLM Performance on CS Concept Inventories

[80] Greg L Nelson and Amy J Ko. 2018. On Use of Theory in Computing Education Research. In Proceedings of the 2018 ACM Conference on International
Computing Education Research. ACM.

[81] Eng Lieh Ouh, Benjamin Kok Siew Gan, Kyong Jin Shim, and Swavek Wlodkowski. 2023. ChatGPT, Can You Generate Solutions for my Coding

Exercises? An Evaluation on its Efectiveness in an undergraduate Java Programming Course. In Proceedings of the 2023 Conference on Innovation

and Technology in Computer Science Education V. 1 (Turku, Finland) (ITiCSE 2023). Association for Computing Machinery, New York, NY, USA,

54–60. https://doi.org/10.1145/3587102.3588794

[82] Miranda C Parker, Mark Guzdial, and Shelly Engleman. 2016. Replication, Validation, and Use of a Language Independent CS1 Knowledge

Assessment. In Proceedings of the 2016 ACM Conference on International Computing Education Research (ICER ’16). ACM, New York, NY, USA,

93–101. https://doi.org/10.1145/2960310.2960316

[83] Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Thompson, Phu Mon Htut, and Samuel Bowman. 2022.

BBQ: A hand-built bias benchmark for question answering. In Findings of the Association for Computational Linguistics: ACL 2022. Association for

Computational Linguistics, Dublin, Ireland, 2086–2105. https://doi.org/10.18653/v1/2022.fndings-acl.165

[84] Baolin Peng, Xiujun Li, Lihong Li, Jianfeng Gao, Asli Celikyilmaz, Sungjin Lee, and Kam-Fai Wong. 2017. Composite Task-Completion Dialogue

Policy Learning via Hierarchical Deep Reinforcement Learning. (2017). https://doi.org/10.18653/v1/d17-1237

[85] Gustavo Pinto, Isadora Cardoso-Pereira, Danilo Monteiro, Danilo Lucena, Alberto Souza, and Kiev Gama. 2023. Large Language Models for

Education: Grading Open-Ended Questions Using ChatGPT. In Proceedings of the XXXVII Brazilian Symposium on Software Engineering (Campo

Grande, Brazil) (SBES ’23). Association for Computing Machinery, New York, NY, USA, 293–302. https://doi.org/10.1145/3613372.3614197

[86] Leo Porter, Daniel Zingaro, Soohyun Nam Liao, Cynthia Taylor, Kevin C Webb, Cynthia Lee, and Michael Clancy. 2019. BDSI: A Validated Concept

Inventory for Basic Data Structures. In Proceedings of the 2019 ACM Conference on International Computing Education Research (Toronto ON,

Canada) (ICER ’19). Association for Computing Machinery, New York, NY, USA, 111–119. https://doi.org/10.1145/3291279.3339404

[87] James Prather, Paul Denny, Juho Leinonen, Brett A Becker, Ibrahim Albluwi, Michelle Craig, Hieke Keuning, Natalie Kiesler, Tobias Kohn,

Andrew Luxton-Reilly, Stephen MacNeil, Andrew Petersen, Raymond Pettit, Brent N Reeves, and Jaromir Savelka. 2023. The Robots Are

Here: Navigating the Generative AI Revolution in Computing Education. In Proceedings of the 2023 Working Group Reports on Innovation and

Technology in Computer Science Education (Turku, Finland) (ITiCSE-WGR ’23). Association for Computing Machinery, New York, NY, USA, 108–159.

https://doi.org/10.1145/3623762.3633499

[88] Arif Rachmatullah, Bita Akram, Danielle Boulden, Bradford Mott, Kristy Boyer, James Lester, and Eric Wiebe. 2020. Development and validation of

the middle grades computer science concept inventory (MG-CSCI) assessment. EURASIA Journal of Mathematics, Science and Technology Education

16, 5 (2020), em1841.

[89] Inioluwa Deborah Raji, Emily M Bender, Amandalynne Paullada, Emily Denton, and Alex Hanna. 2021. AI and the Everything in the Whole Wide

World Benchmark. (Nov. 2021). arXiv:2111.15366 [cs.LG]

[90] Sam Saarinen, Shriram Krishnamurthi, Kathi Fisler, and Preston Tunnell Wilson. 2019. Harnessing the Wisdom of the Classes: Classsourcing and

Machine Learning for Assessment Instrument Generation. In Proceedings of the 50th ACM Technical Symposium on Computer Science Education

(Minneapolis, MN, USA) (SIGCSE ’19). Association for Computing Machinery, New York, NY, USA, 606–612. https://doi.org/10.1145/3287324.3287504

[91] Oscar Sainz, Jon Ander Campos, Iker García-Ferrero, Julen Etxaniz, Oier Lopez de Lacalle, and Eneko Agirre. 2023. NLP Evaluation in trouble: On

the Need to Measure LLM Data Contamination for each Benchmark. (Oct. 2023). arXiv:2310.18018 [cs.CL]

[92] Eddie Antonio Santos, Prajish Prasad, and Brett A. Becker. 2023. Always Provide Context: The Efects of Code Context on Programming Error

Message Enhancement. In Proceedings of the ACM Conference on Global Computing Education Vol 1 (Hyderabad, India) (CompEd 2023). Association

for Computing Machinery, New York, NY, USA, 147–153. https://doi.org/10.1145/3576882.3617909

[93] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic Generation of Programming Exercises and Code Explanations Using

Large Language Models. In Proceedings of the 2022 ACM Conference on International Computing Education Research - Volume 1 (Lugano and Virtual

Event, Switzerland) (ICER ’22, Vol. 1). Association for Computing Machinery, New York, NY, USA, 27–43. https://doi.org/10.1145/3501385.3543957

[94] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic Generation of Programming Exercises and Code Explanations Using

Large Language Models. In Proceedings of the 2022 ACM Conference on International Computing Education Research - Volume 1 (Lugano and Virtual

Event, Switzerland) (ICER ’22). Association for Computing Machinery, New York, NY, USA, 27–43. https://doi.org/10.1145/3501385.3543957

[95] Andreas Säuberli and Simon Clematide. 2024. Automatic Generation and Evaluation of Reading Comprehension Test Items with Large Language

Models. (April 2024). arXiv:2404.07720 [cs.CL]

[96] Jaromir Savelka, Arav Agarwal, Marshall An, Chris Bogart, and Majd Sakr. 2023. Thrilled by Your Progress! Large Language Models (GPT-4) No

Longer Struggle to Pass Assessments in Higher Education Programming Courses. In Proceedings of the 2023 ACM Conference on International
Computing Education Research - Volume 1 (Chicago, IL, USA,) (ICER ’23). Association for Computing Machinery, New York, NY, USA, 78–92.

https://doi.org/10.1145/3568813.3600142

[97] Jaromir Savelka, Arav Agarwal, Christopher Bogart, and Majd Sakr. 2023. Large Language Models (GPT) Struggle to Answer Multiple-Choice

Questions about Code. (March 2023). arXiv:2303.08033 [cs.CL]

[98] Jaromir Savelka, Arav Agarwal, Christopher Bogart, Yifan Song, and Majd Sakr. 2023. Can Generative Pre-trained Transformers (GPT) Pass

Assessments in Higher Education Programming Courses? (March 2023). arXiv:2303.09325 [cs.AI]

[99] Stanford Center for Research on Foundation Models. 2022. Ecosystem Graphs for Foundation Models. https://crfm.stanford.edu/ecosystem-

graphs/index.html?mode=table. Accessed: 2024-3-12.

Manuscript submitted to ACM

https://doi.org/10.1145/3587102.3588794
https://doi.org/10.1145/2960310.2960316
https://doi.org/10.18653/v1/2022.findings-acl.165
https://doi.org/10.18653/v1/d17-1237
https://doi.org/10.1145/3613372.3614197
https://doi.org/10.1145/3291279.3339404
https://doi.org/10.1145/3623762.3633499
https://arxiv.org/abs/2111.15366
https://doi.org/10.1145/3287324.3287504
https://arxiv.org/abs/2310.18018
https://doi.org/10.1145/3576882.3617909
https://doi.org/10.1145/3501385.3543957
https://doi.org/10.1145/3501385.3543957
https://arxiv.org/abs/2404.07720
https://doi.org/10.1145/3568813.3600142
https://arxiv.org/abs/2303.08033
https://arxiv.org/abs/2303.09325
https://crfm.stanford.edu/ecosystem-graphs/index.html?mode=table
https://crfm.stanford.edu/ecosystem-graphs/index.html?mode=table

26 Ali et al.

[100] Andrew Taylor, Alexandra Vassar, Jake Renzella, and Hammond Pearce. 2024. dcc –help: Transforming the Role of the Compiler by Generating

Context-Aware Error Explanations with Large Language Models. In Proceedings of the 55th ACM Technical Symposium on Computer Science
Education V. 1 (Portland, Oregon, USA) (SIGCSE 2024). Association for Computing Machinery, New York, NY, USA, 1314–1320. https://doi.org/10.

1145/3626252.3630822

[101] Cynthia Taylor, Daniel Zingaro, Leo Porter, Kevin C Webb, Cynthia Bailey Lee, and Mike Clancy. 2014. Computer science concept inventories: past

and future. Computer Science Education 24, 4 (2014), 253–276.

[102] Allison Elliott Tew and Mark Guzdial. 2011. The FCS1: a language independent assessment of CS1 knowledge. In Proceedings of the 42nd ACM

Technical Symposium on Computer Science Education (Dallas, TX, USA) (SIGCSE ’11). Association for Computing Machinery, New York, NY, USA,

111–116. https://doi.org/10.1145/1953163.1953200

[103] The National Science Foundation and The Institute of Education Sciences. 2018. Companion Guidelines on Replication & Reproducibility in Education

Research. Technical Report. NSF and IES.

[104] Jan Vahrenhold and Wolfgang Paul. 2014. Developing and validating test items for frst-year computer science courses. Computer Science Education

24, 4 (2014), 304–333. https://doi.org/10.1080/08993408.2014.970782 arXiv:https://doi.org/10.1080/08993408.2014.970782

[105] Yaqing Wang, Quanming Yao, James T. Kwok, and Lionel M. Ni. 2020. Generalizing from a Few Examples: A Survey on Few-shot Learning. ACM

Comput. Surv. 53, 3, Article 63 (jun 2020), 34 pages. https://doi.org/10.1145/3386252

[106] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt.

2023. A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT. arXiv:2302.11382 [cs.SE]

[107] R. Paul Wiegand, Anthony Bucci, Amruth N. Kumar, Jennifer L. Albert, and Alessio Gaspar. 2016. A Data-Driven Analysis of Informatively Hard

Concepts in Introductory Programming. In Proceedings of the 47th ACM Technical Symposium on Computing Science Education (Memphis, Tennessee,

USA) (SIGCSE ’16). Association for Computing Machinery, New York, NY, USA, 370–375. https://doi.org/10.1145/2839509.2844629

[108] Ben Williamson. 2024. AI in education is a public problem. https://codeactsineducation.wordpress.com/2024/02/22/ai-in-education-is-a-public-

problem/. Accessed: 2024-5-30.

[109] Tianyu Wu, Shizhu He, Jingping Liu, Siqi Sun, Kang Liu, Qing-Long Han, and Yang Tang. 2023. A Brief Overview of ChatGPT: The History, Status

Quo and Potential Future Development. IEEE/CAA Journal of Automatica Sinica 10, 5 (2023), 1122–1136. https://doi.org/10.1109/JAS.2023.123618

[110] Changrong Xiao, Sean Xin Xu, Kunpeng Zhang, Yufang Wang, and Lei Xia. 2023. Evaluating Reading Comprehension Exercises Generated by LLMs:

A Showcase of ChatGPT in Education Applications. In Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications
(BEA 2023), Ekaterina Kochmar, Jill Burstein, Andrea Horbach, Ronja Laarmann-Quante, Nitin Madnani, Anaïs Tack, Victoria Yaneva, Zheng Yuan,

and Torsten Zesch (Eds.). Association for Computational Linguistics, Toronto, Canada, 610–625. https://doi.org/10.18653/v1/2023.bea-1.52

[111] Benjamin Xie. 2019. Supplementary Info for ”An Item Response Theory Evaluation of a Language-Independent CS1 Knowledge Assessment” (Xie

et al. SIGCSE 2019). https://github.com/codeandcognition/archive-2019sigcse-xie. Accessed: 2024-1-15.

[112] Benjamin Xie, Matthew J Davidson, Min Li, and Amy J Ko. 2019. An Item Response Theory Evaluation of a Language-Independent CS1 Knowledge

Assessment. In Proceedings of the 50th ACM Technical Symposium on Computer Science Education (Minneapolis, MN, USA) (SIGCSE ’19). ACM,

699–705. https://doi.org/10.1145/3287324.3287370

[113] Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. 2024. A survey on Large Language Model (LLM) security and privacy:

The Good, The Bad, and The Ugly. High-Confdence Computing (March 2024), 100211. https://doi.org/10.1016/j.hcc.2024.100211

[114] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,

Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.

2023. A Survey of Large Language Models. (2023). arXiv:2303.18223 [cs.CL]

[115] Kun Zhou, Yutao Zhu, Zhipeng Chen, Wentong Chen, Wayne Xin Zhao, Xu Chen, Yankai Lin, Ji-Rong Wen, and Jiawei Han. 2023. Don’t Make

Your LLM an Evaluation Benchmark Cheater. (Nov. 2023). arXiv:2311.01964 [cs.CL]

Manuscript submitted to ACM

https://doi.org/10.1145/3626252.3630822
https://doi.org/10.1145/3626252.3630822
https://doi.org/10.1145/1953163.1953200
https://doi.org/10.1080/08993408.2014.970782
https://arxiv.org/abs/https://doi.org/10.1080/08993408.2014.970782
https://doi.org/10.1145/3386252
https://arxiv.org/abs/2302.11382
https://doi.org/10.1145/2839509.2844629
https://codeactsineducation.wordpress.com/2024/02/22/ai-in-education-is-a-public-problem/
https://codeactsineducation.wordpress.com/2024/02/22/ai-in-education-is-a-public-problem/
https://doi.org/10.1109/JAS.2023.123618
https://doi.org/10.18653/v1/2023.bea-1.52
https://github.com/codeandcognition/archive-2019sigcse-xie
https://doi.org/10.1145/3287324.3287370
https://doi.org/10.1016/j.hcc.2024.100211
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2311.01964

	Abstract
	1 Introduction: The Rapidly Evolving Landscapes of Large Language Models
	2 Related Work
	2.1 Benchmarking Large Language Models (in Computing Education Research)
	2.2 Concept Inventories

	3 Method
	3.1 Concept Inventory Selection & Item Translation
	3.2 Integrating CIs into HELM
	3.3 Analysis

	4 Results
	4.1 RQ1: LLM Performance
	4.2 RQ2: Informal Expert Panel Review
	4.3 RQ3: Challenges with Automating LLM Benchmarking

	5 Discussion: Understanding of LLM Performance for More Valid Assessments
	5.1 Limitations and Threats to Validity
	5.2 Automating Closed-Ended Evaluations for Reproducibility and Replicability
	5.3 Mixed-Methods Evaluations for Rigor

	6 Conclusion
	Acknowledgments
	References

